

Task-Aware Location-Based Services for
Mobile Environments

FP7-SME-207-1-222292-TALOS

Task Model and Authoring Tool
D2.1
Deliverable lead contractor: IMIS

Anastasios Arvanitis, IMIS anarv@imis.athena-innovation.gr

John Liagouris, IMIS liagos@imis.athena-innovation.gr

Alexandros Efentakis, CTI efedakis@cti.gr

Eleni Tsigka, ISST eleni.tsigka@isst.fraunhofer.de

Stefan Pfennigschmidt, ISST stefan.pfennigschmidt@isst.fraunhofer.de

Due date: 31.3.2010

Actual submission date: 29.4.2010

Abstract
Presents a generic task modeling framework along with its

properly adapted version for the purposes of TALOS. It also

describes the overall management of task ontologies in

TALOS along with the Task Ontology Authoring Tool (TOAT)

that will be used by the SMEs in order to define tasks for the

mobile users based on the established task model.

Copyright © 2010 TALOS consortium – http://www.talos.cti.gr

Research Academic Computer Technology Institute, Greece
Fraunhofer Gesellschaft, Institute for Software and Systems Engineering, Germany
Institute for the Management of Information Systems / Athena Research and Innovation
Center in Information, Communication and Knowledge Technologies, Greece
Katholieke Universiteit Leuven, Belgium
Michael Müller Verlag, Germany
Talent SA, Greece
WiGeoGIS, Austria

Table of Contents

1 INTRODUCTION ... 5

2 THE CONCEPT OF ONTOLOGY ... 6

2.1 UPPER AND DOMAIN ONTOLOGIES ... 9

2.2 TASK ONTOLOGIES .. 10

2.3 TASK ONTOLOGIES IN TALOS ... 13

2.4 DOMAIN AND CONTEXT ONTOLOGIES IN TALOS .. 16

3 TODO LANGUAGE REQUIREMENTS ... 19

4 TODO LANGUAGE SPECIFICATION ... 20

4.1 THE CONCEPT OF TASK IN TODO .. 21

4.2 TASK CATEGORIES IN TODO ... 27

4.3 THE GRAPHICAL MODEL OF TODO .. 28

4.3.1 SubTaskOf .. 28

4.3.2 Sequence ... 29

4.3.3 OR .. 29

4.3.4 CHOICE.. 30

4.3.5 GROUP ... 31

4.4 THE XML SYNTAX OF TODO .. 33

4.4.1 The <todo:model> tag ... 33

4.4.2 Tags denoting the Task Attributes ... 33

4.4.2.1 The <todo:realizedBy> tag ... 36

4.4.3 Tags denoting the Task Parameters ... 37

4.4.3.1 The <todo:preInformation> tag ... 37

4.4.3.2 The <todo:input> tag .. 37

4.4.3.3 The <todo:instantiatedBy> tag ... 38

4.4.3.4 The <todo:pGroup> tag ... 41

4.4.3.5 The <todo:preCondition> tag ... 43

4.4.3.6 The <todo:preference> tag .. 45

4.4.3.7 The <todo:postInformation> tag .. 45

4.4.3.8 The <todo:output> tag ... 46

4.4.3.9 The <todo:postCondition> tag ... 46

4.4.3.10 The <todo:effect> tag ... 47

4.4.4 The <todo:extends> tag .. 47

4.4.5 Task Relations .. 48

4.4.5.1 The <todo:subTaskOf> tag .. 49

4.4.5.2 The <todo:sequence> tag ... 49

4.4.5.3 The <todo:or> tag ... 51

4.4.5.4 The <todo:choice> tag ... 51

4.4.5.5 The <todo:group> tag .. 52

4.5 THE LOGICAL FORMALISM UNDERNEATH TODO ... 54

4.5.1 A Description Logic Knowledge Base .. 54

4.5.2 Expressing a ToDo Task Ontology in Description Logic 57

4.5.3 Reasoning with Knowledge Bases .. 60

4.6. EXAMPLE ... 62

5 TASK ONTOLOGY LIFECYCLE .. 65

 AUTHOR OF THE TASK ONTOLOGY ... 67

 TALOS SERVER ... 67

 CONTENT MANAGER ... 69

 END USER .. 69

6 TASK ONTOLOGY AUTHORING TOOL .. 70

6.1 INTRODUCTION ... 70

6.2 USER REQUIREMENTS .. 71

6.3 TOAT OVERVIEW AND DESIGN DECISIONS .. 75

6.4 THE TOAT UI .. 76

7 TALOS SERVER DATABASE ... 79

7.1 INTRODUCTION ... 79

7.2 ENTITY-RELATIONSHIP DIAGRAM .. 79

7.2.1 TODB ER Diagram ... 80

7.2.2 CB ER Diagram ... 83

7.3 DATA MODEL OVERVIEW .. 85

7.4 DESCRIPTION OF TABLES ... 87

7.4.1 Table Task .. 87

7.4.2 Table Model .. 88

7.4.3 Table Task_Subsumption.. 88

7.4.4 Table Task_Sequence .. 89

7.4.5 Table Parameter .. 90

7.4.6 Table Parameter_Binding ... 90

7.4.7 Table XSD .. 90

7.4.8 Table Content ... 90

7.4.9 Table POI ... 91

7.4.10 Table Accommodation .. 92

7.4.11 Table Eat_and_Drink ... 92

7.4.12 Table Shopping ... 93

7.4.13 Table Services .. 93

7.4.14 Table Activities.. 93

7.4.15 Table Entertainment .. 94

7.4.16 Table Review .. 94

7.4.17 Table Content_POI .. 94

7.4.18 Table Content_City .. 94

7.4.19 Table City ... 95

7.4.20 Table Geonames ... 95

7.4.21 Table Context ... 96

7.4.22 Table Task_Content ... 97

7.4.23 Table Task_POI ... 97

7.4.24 Table POI_Type ... 97

7.4.25 Table POI_Context .. 97

7.4.26 Table Content_Context .. 98

7.4.27 Table Task_Context ... 98

8 REFERENCES .. 99

APPENDIX I - TODO XML SCHEMA .. 102

APPENDIX II – EXAMPLE IN XML .. 107

1 Introduction

One major reason for the difficulties in searching, finding and selecting

suitable services is that User Interfaces (UIs) are currently designed from

the view point of the domain. By using keywords, one has to follow the

menu provided, “translate” what he/she wants to do in terms of the menu

and finally reach the appropriate services [1].

A common sense already implied in the previous paragraph is that

users organize their everyday lives around solving problems (tasks) and

thus both services and content should be structured around tasks in order

for them to be easily discovered and assimilated. This idea is strongly

encouraged by the enlightening evaluation of NTT DoCoMo‟s1 task-based

approach conducted in 2004. As it is shown in [2], the percentage of users

reached the appropriate services by employing a keyword-type search

through their handsets was no greater than 16%, whereas in the

existence of a task-oriented search interface the corresponding

percentage grew up to about 63%. According to the same test, it is also

astonishing that 50% of the latter (one out of two) reached the services

within five minutes, compared to just 10% (one out of ten) of the

keyword-type search users.

Precondition for providing automated task-based services is

the formal description of the potential tasks. This procedure amounts

to the construction of a task model or, in other words, a so-called Task

Ontology. Up to now, Task Ontologies have been used in various fields of

Computer Science, from Artificial Intelligence and Expert Systems [3, 4]

to Geographical Information Systems [5] and UI Modelling [6]. In general,

the reason for their popularity lies in that they provide a very flexible way

for representing problem solving procedures, mainly because they

facilitate sharing and reuse of knowledge along with automated reasoning

capabilities. In the context of TALOS, each Task Ontology includes the

specification of the task attributes and parameters (e.g. name, input,

necessary and/or sufficient conditions for accomplishing a task) and the

definition of the relations between different tasks such as subsumption

and temporal ordering.

The remaining document is organised as follows. Section 2 clarifies the

notion of ontology and explains how Task and Domain Ontologies can be

used in modelling users‟ tasks along with existing services and resources.

Having a good picture of these issues, the requirements and specification

1 NTT DOCOMO (http://www.nttdocomo.com) is Japan's premier provider of
leading-edge mobile voice, data and multimedia services having more than 54
million customers.

http://www.nttdocomo.com/

of ToDo, a Description Language for modelling tasks, are then provided in

Sections 3 and 4 respectively. Section 5 describes the overall

management of task ontologies in TALOS. Section 6 presents the Task

Ontology Authoring Tool (TOAT). We conclude in Section 7 where we

describe the TALOS Server Database.

2 The Concept of Ontology

The term Ontology is used in a variety of fields, from Philosophy and

Biology to Computer Science and Artificial Intelligence. In each of these

fields, ontologies serve for different purposes and as a result they come

with different meanings and definitions. For reasons that become clear in

the following, this section focuses only on the notion of ontology from the

view point of the Semantic Web [7].

In general, the realization of the Semantic Web imposes the

enrichment of the current (syntactic) web with firm and “globally

accepted” semantics, i.e. with application-independent metadata (data

describing the data) that are based on logical formalisms like First Order

Logic (FOL). Despite all the arising obstacles, this procedure is essential in

that it enables software agents to share, reuse, compose and process the

exchanged information automatically. Ontologies play a key role in this

effort. In fact, the reason for their popularity lies in that they provide an

elegant solution to the aforementioned problem.

A simplified definition of the term Ontology in Semantic Web

terminology could be the following:

DEFINITION 1: An ontology is a formal specification of a

conceptualization.

Each ontology of the Semantic Web consists of two parts:

 A vocabulary (intentional knowledge) that consists of concepts

(aka classes) and relationships (aka properties or roles). Classes

are regarded as sets of individuals that share at least one

common attribute, while properties are sets of pairs of

individuals and denote a relationship between the members of

each pair.

 An additional knowledge (extensional knowledge) that consists

of individuals, class and property assertions. A class assertion

denotes that a specific individual belongs to a class, while a

property assertion assigns a pair of individuals to a specific

property. Analogously to the terminology of the object oriented

programming paradigm, individuals are also called instances and

they usually represent resources of the World Wide Web.

A usual claim in literature is that each ontology has its own

vocabulary. This can be explained easily with the following example:

Let we want to model (a) a genealogy tree and (b) our knowledge

about the existing varieties of wine. In the first case, we have to use

concepts such as “Father”, “Grandmother” and relationships like “has

descendant”, “are siblings” etc. The reader can easily assume that the

instances of this ontology will represent humans. However, as far as the

wine domain is concerned, the previous classes and properties are

obviously completely useless. Here we have to use concepts such as “Red

Wine”, “Sour Wine” and properties like “has flavour”, “has colour” etc.

Instances in this case could be specific wines such as “Zinfandel” and

“Cabernet”.

Concrete examples of such two (domain) ontologies can be found in

[8] and [9]. Besides their XML syntax that is used for achieving platform-

independence, easy storage and efficient processing by software, these

ontologies can be visualized in a human-friendly way using an ontology

editor like [10,11,12]. An abstract 2D graph-like representation of a

simple ontology about family relationships is given in Figure 1.

Ellipses in Figure 1 denote classes, while rectangles stand for

individuals. A line between two classes denotes an “IS-A” (subsumption)

relationship. Such subsumption relationships form a so-called Class

Hierarchy. Dotted lines are used to visualize class assertions. We point out

that there are not property assertions in this example and that, depending

on the expressivity of the ontology, subsumption relationships may also

exist between two properties (e.g. “has daughter” can be defined as a

subproperty of “has kid”).

Although the graph-like representation gives us a good picture of the

domain of interest, i.e. the family, however it conceals a very important

feature of the ontology, the axioms. Figure 1 can be misleading as it

seems to illustrate an a priori categorization. However, each complex class

(e.g. Uncle), assertion and relationship between classes, properties and

individuals is internally expressed in the form of axioms based on a logical

formalism. From this point of view, the relationships in Figure 1 are

derived from a set of axioms (the so-called Knowledge Base - KB) and can

be enriched with new (implicit) axioms when the latter are discovered

through an inference procedure.

The dominant family of logical formalisms for constructing ontologies

for the Semantic Web is Description Logic (DL) [13]. DL is probably the

most thoroughly understood logical formalism, but this is in a great extent

only a consequence of its popularity. The actual reasons that led to the

prevalence of DL in Semantic Web applications are the following:

 In contrast to other logical formalisms such as FOL, the syntax

of DL is human-friendly and its semantics are set-theoretic and

reminiscent to those of the object oriented programming

paradigm.

 DL is decidable and provides efficient sound & complete

algorithms (e.g. Tableau procedure [14]) for reasoning over the

described knowledge. Highly optimized tools [15,16], aka

Reasoners, have been developed and are already used in

various applications, some of which are very similar to our work

in TALOS [17].

We point out that reasoning over a DL ontology amounts to (i) check

the logical consistency of its axioms and (ii) infer implicit knowledge out of

the explicit one. In Section 4.5 we give representative examples of how (i)

and (ii) are exploited in TALOS for checking the semantic correctness of

the created Task Models and recommend context-specific services to the

users.

As already mentioned, besides the abstract graph-like representation,

each ontology must be expressed in a syntax that is easily processed by

software. After years of research, the XML-like languages proposed for

solving this problem are Resource Description Framework Schema (RDFS)

[18] and Web Ontology Language (OWL) [19]. Both are already standards

of the World Wide Web Consortium (W3C) [20]. The former represents

axioms as triples of the form <Subject, Predicate, Object>, while the

latter is based on Description Logic.

Having this basic knowledge about what an ontology stands for, we

can now proceed with describing the different kinds of ontologies in the

Semantic Web.

TOP

FemaleHumanMale

ManPerent SiblingWoman

FatherMother BortherSister

GranpaUncle

Great-granpa

Doris Eve

Martin

George

Figure 1: Family Ontology

2.1 Upper and Domain Ontologies

All previous examples refer to Domain (or Domain-specific)

Ontologies. As its name disclosures, a Domain Ontology is a model of a

specific domain (e.g. “Vehicles”, “Food”, “Genes”, “Poker” etc.) and thus it

captures concepts and relationships from the view point of the

corresponding domain. For instance, assume that we have two domain

ontologies, one for “Brain” and one for “Computer”. A concept “Memory”

in the first case could be used to classify parts of the brain that are

somehow related to the human memory, while the same concept in the

other ontology would probably refer to the main (RAM) and secondary

(hard disk) memory of the machine.

Besides the domain-specific ones, there are also ontologies that model

concepts and relationships among objects which are applicable to a wide

range of domains. These are the so-called Upper (or Foundation)

Ontologies and can be used in constructing various domain-specific

ontologies. Representative examples of upper ontologies are SUMO

(Suggested Upper Merged Ontology) [21] and Dublin Core [22]. To get an

idea of what an upper ontology represents, SUMO contains heterogeneous

entities from “Units of Measurement” (Meter, Farad, Tesla etc.) to

“Linguistic Atoms” (word, verb, noun etc.).

Before addressing Task Ontologies in the next section, we point out

that some domain ontologies can also be used as foundational in case we

want to express concepts and relations that belong to a specific domain

but are also applicable in others (e.g. Time and Space).

2.2 Task Ontologies

Task Ontology is a newly introduced term referring to a formal model

of tasks. According to the domain of interest, a task may represent a

software procedure (e.g. “Sort an array of integers”), a business process

(e.g. “Review the proposals”) or even a simple human activity (e.g. “Cook

food”). As we briefly mentioned in the introduction of this document, Task

Ontologies have gained much popularity over the last years, mainly

because they facilitate sharing and reuse of knowledge along with

automated reasoning capabilities.

In contrast to other modeling approaches such as those followed in

the Unified Modeling Language (UML) [23] and Business Process Modeling

Notation (BPMN) [24], Task Ontologies go beyond the human-oriented

description of the “world” by introducing formal semantics, i.e. logic

underneath the model. To be more specific, both in UML and BPMN

diagrams, formality is restricted in that the components used to visualize

the entities of the “world” are standard. No formal semantics neither

automated reasoning procedures exist up to now. As a consequence, this

lack of logic can lead to unnoticed human errors, sometimes difficult to

find, that violate the semantics of the model. Figure 2 provides an

example of this kind between a UML Sequence Diagram and a UML State

Diagram.

 These diagrams describe the functionality of an ATM. In the first one

(sequence diagram), the message “ejectCard” precedes the

“dispenseCard” one, whereas in the second case (state diagram) the

temporal ordering is the reverse. This error does not violate the

syntax of UML, but it obviously leads to semantic contradiction.

Figure 2: Inconsistent UML diagrams (from [28])

For most people that use UML or BPMN, the lack of formal semantics is

actually of no great importance due to the fact that these languages serve

as a means for enhancing communication among humans, not software

agents. However, in other applications this may be a great disadvantage.

When we need to retrieve, process and exchange information

automatically, formal data semantics are essential. This inevitable

requirement triggered numerous research efforts, one of which, the

Process Ontology of the OWL-S language [25], is described below.

The Process Ontology has been recommended by W3C as a means for

modeling agent processes and it is very close to the notion of the Task

Ontology in TALOS. As it shown in Figure 3, the central entity of the

ontology is the Process. Each process has a set of attributes (input,

output, result, condition etc.) that describe the parameters and conditions

an agent needs to validate in order to successfully execute the process.

Note that the model provides constructors for defining complex processes,

i.e. processes built upon a combination of others (sub-processes). This is

the most important feature of the Process Ontology, as it enables agents

to automatically compose new processes or decompose existing ones. In

Section 4 we will show how we exploit this approach when modeling tasks

in TALOS.

According to Section 2.1, the ontology in Figure 3 can be regarded as

an upper ontology for modeling processes of any kind and it is expressed

in OWL. At this point, there are two things that may seem strange at first

sight and need further discussion:

1. As OWL does not support temporal relations (such as

sequence), how such an ontology can be expressed without

adding the notion of time in Description Logic?

2. According to what we described in the beginning of Section 2,

where are the classes, properties and individuals in this kind of

ontology?

As far as the first issue is concerned, temporal relationships between

individuals in a DL ontology can be represented by object properties like

“before” and “after” (with the corresponding characteristics like

transitivity, inversion etc.). For instance, let we have two processes a and

b, where a precedes b in time of execution. In this case we can easily add

an axiom of the form before(a,b). The same holds for more complex

temporal relations like “overlaps”.

As for the second issue, we can make the following assumption. The

entity Process in Figure 3 is regarded as a class (i.e. a set) of individuals

(i.e. specific processes) that share all the parameters and conditions

shown in Figure 3 as attributes. In other words, the specific processes are

represented as instances (individuals) of the class “Process” that are

connected through the property “hasInput” with other individuals that

belong to the class “Input” and so forth.

Figure 3: The Process Ontology of OWL-S

2.3 Task Ontologies in TALOS

Building a Task Ontology in TALOS amounts to modeling what the user

of a mobile handset may want to do, e.g. “Go to the Theatre”, “Visit a

Museum” or “Eat at a Restaurant”. The basic feature of such an

ontology is that complex tasks like those mentioned before are

broken into simpler subtasks. In fact, this is a human-like approach for

performing a task. When someone wants for instance to go to a theatre,

he/she first looks for the available plays, checks for reviews, confirms the

time of the performance and finally plans his/her route to the theatre. NTT

DoCoMo follows this approach in its task-based service provision system

by applying task ontologies like the one shown in Figure 4.

Figure 4: A Task Ontology used by NTT DoCoMo (from [26])

Although, the ontology in Figure 4 is quite different from the task

ontologies we propose (see Section 4), its “philosophy” is very similar to

the one in TALOS. In both approaches, Task Ontologies serve as a

task-oriented index that is used for retrieving the appropriate

content while guiding users to perform a task. Thus, they serve at

the same time as an abstract model of the mobile user interfaces

(UIs). The latter is reminiscent of the well-known Model-View-Controller

(MVC) architecture paradigm [27] where the view (what the user interacts

with) is based on a (generic) model which changes (through the

controller) according to the user‟s actions. In Figure 5 we give an example

of how a mobile user interface based on a task ontology may look like

(again from NTT DoCoMo). The three-layer cake of the MVC-like approach

followed in TALOS is depicted in Figure 6.

Figure 5: A task-based UI (from [2])

The MVC-like approach provides great flexibility when developing a UI.

As we explain in Section 4, providing IT-illiterate people with a drawing

tool for constructing Task Ontologies, both the structure and the basic

functionality of the UIs can be automatically generated and easily

updated from the XML files representing these “sketches”. However, there

are two issues here requiring further discussion. Task ontologies must be

(a) syntactically correct and (b) semantically consistent.

On the one hand, the correctness of the XML syntax in our approach is

always guaranteed as we only allow authors to draw the ontology, i.e. to

draw a simple graph. The translation of the resulting graphs (along

with the underlying task parameters) into XML and the validation

of the latter according to a specified XML Schema are

automatically performed (in TALOS Server) afterwards.

On the other, the validation of the XML syntax is not always adequate.

Each entity in the task ontology has additional features whose

semantics cannot be captured by a simple XML syntax validation.

Taking into consideration that such features are translated into

functionalities within the UIs2, one can easily understand that we cannot

base our UIs on inconsistent ontologies. Thus, as a solution to this

problem, we propose an additional check on the semantics of the defined

tasks. This check ensures that the task ontology is consistent with

respect to its semantics and it is performed (in TALOS Server)

through automated reasoning and after translating the

information of the task ontology into axioms of the Web Ontology

2 An example of a task feature that is translated into a specific functionality of the
mobile application is the way data flow from one task to another when a
sequence relation between two tasks is introduced.

Language (OWL). The procedure of expressing a ToDo task ontology in

OWL is addressed in Section 4.4.2.

Figure 6: The three-layer cake of the task-based UI architecture in

TALOS

2.4 Domain and Context Ontologies in TALOS

When defining a task, we may need to refer to one or more Domain

Ontologies for concepts and definitions that are used to describe inputs,

outputs, preconditions of the task and so on. We give an example here for

better understanding.

Assume that we have the task “Find a Museum”. Obviously, in order to

perform this task, a user must be provided with a list of all possible

museums in the area he/she is interested in. This list is actually a set of

instances of the class Input (Figure 7) and can be generated from the

instances of a Domain Ontology like those we described in Section 2.

Besides task parameters, tasks and the relations among them can also

be expressed as a set of ontology axioms. We have already addressed the

advantages of this approach. Regarding our example, taking into account

that RDFS and OWL ontologies are amenable to automated reasoning, we

are able to perform the following:

 Classification of resources

Instead of just providing a list of museums that may

prohibitively grow huge, the classification shown in Figure 8 can

be very useful and time-saving when searching for the

appropriate museum.

 Context-aware filtering of the candidate resources

The resources for accomplishing a task alter dynamically

according to the current context. In our case, the list of

museums provided to the end-users obviously depends on the

specified location. Thus, by also describing context in DL (see

survey in [28]), we are able to use conjunctive query

answering techniques (including both context and content) for

the efficient extraction of the most appropriate resources. A

similar approach is followed by NTT DoCoMo in [17].

 Logical consistency check

When constructing the task ontology for “Visit a Museum”, one

has to pay attention not only to the syntax, but also to the

semantics of the model. The former, i.e. the syntax validation,

is ensured by restricting authors to construct the ontology

through a graphical interface (as a graph) and automatically

interpret the graphical notations into XML. However, regardless

the correct syntax, there may be declarations in the ontology

that contradict one another. From our experience, allowing IT-

illiterate authors to arbitrarily define their own entities (tasks,

relations etc.) will definitely result in various logical

contradictions or redundancies. Thus, taking into consideration

that DLs adopt the “open-world assumption”, we can reason

over the described tasks in order to detect such problems and

help authors correct them. Examples of semantic clashes in a

Task Ontology are given in Section 4.

In general, instances of Input, Precondition, UserPreference, Output,

Postcondition and Effect may refer to none or more Domain Ontologies.

Museum

Museum of

Modern Art

Museum of Fine

Arts

Museum of

Natural History

Museum of

Science

Museum of

Industry

Museum of

Photography

Museum of

Classical Art

Museum of

Computer Science

Museum of

Physics

 Figure 7: Museum classification in a Domain Ontology

Summarizing the previous paragraphs, ontologies in TALOS are used

as illustrated in Figure 6. Users‟ tasks are described in the form of

task ontologies while domain and context ontologies contain some

of the data needed for instantiating these tasks, i.e. for capturing

specific users‟ activities. We point out that although content from travel

guides in the form of unstructured text is also used for instantiating users‟

tasks, however, it is not modeled using ontologies; it is just stored and

retrieved into/from a relational database. The only part of information that

can be maintained and retrieved using ontology-based techniques breaks

into the following categories:

 Points of Interest (e.g. museums, parks, hotels etc.)

POI-related information can be either static (retrieved from

travel guides) or dynamic material (retrieved from the web).

POIs along with their properties (e.g. addresses, operating

hours, specific features etc.) are regarded as pieces of well-

structured information that is extracted from the overall

available (unstructured) content and thus they are stored in

TALOS Content Base.

 Context-related information (e.g. date, time, location,

weather3, traveler types)

In the proposed infrastructure, context-related information is

retrieved from a TALOS-specific application named Context

Aggregator (CA) which runs in the mobile device [29]. A part

of the context that is related to time, location and user‟s profile

can be modeled using context ontologies [28].

3 In contrast to other context-related information, weather information is
automatically retrieved by CA from the web; for instance, from the weather Web
Service provided by Yahoo! (http://weather.yahoo.com/).

http://weather.yahoo.com/

Figure 8: Ontologies in TALOS

3 ToDo Language Requirements

The proposed Description Language, ToDo, for constructing Task

Ontologies comes with both a graphical model and an XML-like syntax.

According to our perspectives, ToDo must meet the following needs:

 High Expressivity

All possible tasks in the travel domain and the relationships

among them (hierarchy, sequence, dataflow etc.) must be

described formally in ToDo.

 Easy Usage

ToDo must provide the authors of the Task Ontology with a

friendly vocabulary, close to their natural language. In other

words, the authors must be able to work in a high-level layer of

abstraction without the need of learning neither a new

formalism nor any confusing technical details.

 Ability to Reuse Knowledge

Already described knowledge about solving a task must be

accessible for reuse in another task if suitable. Thus, ToDo

must facilitate the ability to extract parts of solutions related to

different tasks and combine them in creating solutions for new

tasks. A representative example of this case is knowledge

about transportation that may be needed in several Task

Ontologies of different domains.

 Ability to Reason with Tasks

By defining the semantics of ToDo, it is possible to implement

practical algorithms for reasoning over the described tasks. On

the one hand, such reasoning algorithms could be used to

inform authors of the Task Ontology about an inconsistency or

redundancy in their model while, on the other, to provide quick

and valuable recommendations to the end-users‟ requests.

Guiding users when (re)organising their schedules is a

representative example where reasoning over task-related

knowledge can be crucial.

 Compatibility with current technologies

Besides the graphical model that only serves as a means for

comprehending the Task Ontology, there must also be a

machine-processable representation of it. Thus, for ToDo, we

propose an XML-like syntax that is platform independent and

fully compatible with the W3C standards (e.g. HTML, XML,

RDFS etc.).

4 ToDo Language Specification

The proposed language specification is organised as follows. Section

4.1 introduces the concept of Task and its aspects in ToDo. Section 4.2

describes the two task categories and their meanings as defined in the

current specification. Section 4.3 shows how a ToDo Task Ontology can be

visualised in order to facilitate the authoring procedure. Section 4.4

introduces the XML-like syntax of the language, i.e. the tags used for

denoting the entities and relations existing in a Task Ontology. Section 4.5

provides a detailed description of the logical formalism ToDo is based on.

We conclude in Section 4.6 with a simple example of a Task Ontology built

with ToDo.

4.1 The concept of Task in ToDo

A task reflects what an end-user wants to do in a high-level

layer of abstraction, e.g. “Visit a Museum”. Each task is accompanied by

a set of attributes (input, output, precondition etc.) and it is instantiated

by context and content in order to become an activity. For example,

an activity belonging to the previous task is something like “Visit the

Museum of Acropolis” as shown in Figure 9. The entity “Museum of

Acropolis” is a piece of well-structured content also known as Point of

Interest (POI). POIs are stored in TALOS Content Base along with

unstructured content in the form of text, images etc. (see Section 7).

From the application perspective, the dynamic context corresponding

to a specified activity is always retrieved by a module called

Context Aggregator (CA) which runs in the mobile device (see [29]).

Figure 9: The task “Visit a Museum” as a class of activities that

share common types of attributes

Besides the dynamic activity-related context (whether, time, location),

there is also a part of user-related context known as User Profile which

includes a number of features that refer to the traveller type (e.g.

backpack traveller, family traveller, business traveller etc.). This part of

context is also managed by the CA.

The different types of task attributes in ToDo are depicted in Figure 10.

When someone creates a task, he/she actually creates instances of the

template illustrated in Figure 10 and thus the proposed structure serves

as the bottom layer of the abstract “nodes” in the constructed Task

Hierarchy (see Section 4.3).

Task

BelongsToModel

RealizedBy

DescribredBy

HasTaskDescription

HasTaskPublisher

CreatedOn

HasTaskAuthor

HasTaskName

HasVersionNumber

HasProperties

HasPreInformation

HasPostInformation

PreInformation

PostInformation

HasInput

HasPreCondition

HasPreference

HasOutput

HasPostCondition

HasEffect

Input PreCondition UserPreference

OutputPostConditionEffect

SubPropery relation:

 SubClass relation:

 Object property:

 Datatype property:

InLanguage

ExtendsTask

 Figure 10: Task structure in ToDo

ToDo is task-oriented, i.e. the basic entity of the language is the Task.

Each task has a set of properties that are explained below:

 RealizedBy

This property specifies that the task is successfully realized by a

service. Each service is identified by a unique URI and each

task may be realized by more than one services. Web Services

in TALOS are mainly used for realizing general tasks, i.e. tasks

that break down into simpler ones but can optionally be

accomplished by simply redirecting the user to the available

Web Service. The task “Book a Hotel Room” is a representative

example of this kind.

 BelongsToModel

This property specifies the Task Ontology a task belongs to.

Each Task Ontology is identified by a unique URI (Universal

Resource Identifier). A task is defined in only one Task

Ontology, but it can be imported to other Task Ontologies for

reuse. This is specified by the following object property.

 ExtendsTask

This property specifies that the task extends another task that

is defined in another Task Ontology. The imported task is

denoted by its name, version, and the URI of the ontology it

belongs to. For instance, the task “Move to the Station” may

extend the general task “Move from A to B” as defined in the

“Transportation” Task Ontology. All functional properties

(Preinformation and PostInformation) of the imported task

are inherited by the task that is extending it.

 DescribedBy

This property has several subproperties which are used to

describe non-functional aspects of a task. In other words, all

of the following properties4 are used for providing task-related

information to authors:

o HasTaskName

This property is used for naming the task, e.g. “Go to the

theatre”.

o InLanguage

This property specifies the language in which the task is

described, e.g. “English”.

o HasTaskDescription

This property is used for summarizing text information

about what the task can perform under what conditions

etc. A simple description of the task “Go to theatre” can

be like “This task is for helping users to find a play,

search for critics about the play, find the theatre, get

information about operating hours, and move to the

theatre”.

o HasTaskAuthor

This property is used for specifying the name(s) of the

task author(s), e.g. “John Liagouris”.

o HasTaskPublisher

4 Except HasVersionNumber that is also used by the TALOS system in updates.

This property is used for specifying the name of the task

publisher, e.g. “IMIS/RC Athena”.

o CreatedOn

This property is used for specifying the date a task was

created, e.g. 2009-09-14. This attribute is automatically

generated by the first time a task is specified.

o HasVersionNumber

This property is used for specifying the version of a task.

When an author creates or updates a task, its version

number is generated automatically. As explained in

Section 5.2, versions are needed for updating tasks and

for supporting a collaborative authoring environment.

 HasProperties

There are two types of functional properties:

o Properties for describing information needed for a task

before executing it.

o Properties for describing information after executing the

task.

The first one includes classes of Input, PreCondition and

UserPreference which are subclasses of the class

PreInformation. The second one includes Output, PostCondition

and Effect which are subclasses of the class PostInformation.

All these classes are explained below:

o Input

An input represents information required for performing

a task. Depending on the activity-specific parameters,

inputs may be optional. For instance, the task “Find a

Restaurant” may take as alternative inputs the exact

location of the user in the form of longitude and latitude,

as long as an abstract location in the form of the city or

neighbourhood name he/she is located in. Task input

parameters are classified under (a) context-related

attributes, e.g. the user‟s location, and (b) POI-

related attributes, e.g. a the name (or id) of the mall

in the task “Get info about the Mall”.

o PreCondition

A precondition represents conditions that must hold in

order for a task to be performed successfully.

Precondition parameters can be (a) logical expressions

applying to context, and (b) simple notices in the

form of unstructured text that is used for informing end-

users. Regarding the task “Move By Bus”, a

representative precondition example of the first case is

“Current_Time<00.00”. A simple precondition notice

could be something like “Booking a flight ticket requires a

credit card”.

o UserPreference

A preference describes a preferred property of the task

output. User preferences are logical expressions

applying to (a) task-specific input parameters and

(b) POI-related attributes that exist in the user‟s local

database. An example of a user‟s preference in the task

“Find a Flight” may be something like “$Flight_Time>

8.00 && $Flight_Time<15:00”. Regarding the second

case, the preference “POI.Rank=5” can be used in

filtering the hotels retrieved from the user‟s local

database [30] when searching for a luxurous one. Such

logical expressions are evaluated on-the-fly in order to

act as an optional filter when the users search for the

most appropriate resources or services. From the UI

perspective, a UserPreference parameter indicates the

existence of a screen where the user can specify his/her

preferences on the available task inputs and/or POI

attributes.

o Output

An output describes information returned after

performing a task. Similarly to the case of inputs, task

outputs are classified under (a) context-related

attributes, e.g. type of weather produced from the task

“Get Weather Forecast”, (b) POI-related attributes,

e.g. the name and type of a POI that matches the

specified input parameters, and (c) content in the form

of unstructured text that is retrieved either from the

travel guide (static) or from the web (dynamic). An

output of a task may be used as input in other tasks of

the Task Ontology. In the case of TALOS, the default

output of a task is the unstructured content

retrieved from the travel guide.

o PostCondition

A postcondition represents conditions that must hold

after performing a task. Postconditions are logical

expressions which apply to (a) context-related

parameters and (b) task-specific output

parameters. An example of a postcondition regarding

the task “Move to the Park” could be something like

“CA.Position=$POI_Coordinates” where CA.Position is a

context-related parameter refering to the user‟s position

(managed by CA) while POI_Coordinates is the position

of the POI (i.e. the specified park) defined as an output

of the task. From the mobile application perspective,

such a postcondition is useful when helping the user

(re)organise the schedule of tasks to perform during

his/her trip.

o Effect

An effect describes actual events that occur after

performing a task, e.g. “The boarding pass is delivered at

your email”. Effects are simple notices in the form of

text used for informing users about the effects of the

task they performed.

Table 1 summarizes the features of the aforementioned task

parameters. From the application perspective, the instantiation of a

parameter is done on-the-fly (when the application runs on the mobile

handset) with only exception the case where a task author has already

specified the parameter value when defining the task (within the Task

Ontology Authoring Tool - TOAT). In ToDo, the symbol “$” is used to

denote task-specific variables defined as inputs or outputs of a

task. The variables used for capturing the activity-related context

(Weather, Location, DateTime, User Profile) are managed by the

Context Aggregator and they are denoted by the prefix “CA”.

Finally, the variables that will be created (by the application) in

order to store the user-provided values are denoted by the prefix

“Usr”.

 Parameter Applies to Instantiated By Example

Input

Context

Context Aggregator

User‟s Location (longitude , latitude)

POI Application Acropolis Museum

PreCondition

Task Input

Context Aggregator

CA.Weather_Type = „Sunny‟

Notice Task Author (a priori) “You need a credit card to proceed” (text)

UserPreference

Task Input

End-User

(through the UI)

Usr.BeginDate <= $Flight_Date

$Flight_Date <= Usr.EndDate

POI POI.Style=Usr.Style

Output

Context Context Aggregator
Weather Forecast (object)

Content

Task Author (a priori)

City History (content)

POI Application List of Restaurants nearby (POI object)

PostCondition

Context

Context Aggregator

CA.Position = $POI_Location

Task Output Application

Effect Notice Task Author (a priori) “Book receipt is delivered by email” (text)

Table 1: Task Parameters in ToDo

4.2 Task Categories in ToDo

In ToDo we define two abstract task categories as shown in Figure 11.

Intuitively, the following classification of tasks is based on whether the

activities a user needs to perform for accomplishing the task can

break into one or more logically interrelated groups:

 Simple Task

A simple (or base) task is directly completed by one and only

one group of activities. A representative example of this

category is the task “Find a Pharmacy”.

 Complex task

A complex task consists of two or more simple tasks and thus it

is accomplished by more than one group of activities. An

example of a complex task is a task of planning a trip which

consists of several tasks like flight booking, hotel booking, car

renting etc. Complex Tasks collapse to simple ones or

other complex tasks. From the TALOS application

perspective, a complex task is regarded as a “blank node” in

the overall Task Hierarchy which enclosures the specific tasks a

user performs.

Complex Task Simple Task

Task

Figure 11: Task Categories in ToDo

4.3 The graphical model of ToDo

In this section we provide the reader with the graphical notations used

to represent relations between tasks. As shown in the following figures, a

ToDo Task Ontology is represented in 2D as an abstract directed

acyclic graph (DAG). In such a graph, nodes represent tasks, while

edges represent relations among the latter. ToDo supports four different

kinds of relationships between tasks.

4.3.1 SubTaskOf

Tasks in ToDo can be decomposed into (simpler) subtasks. In terms of

functionality, this is very helpful when guiding a user. An example of a

subtask relation for a task C, let “Plan a Weekend Trip”, that breaks into

tasks C1 “Find Accommodation” and C2 “Plan Sightseeing” is given in

Figure 12. Note that the following subtasks can be accomplished in

any order.

Find

Accommodation
Plan Sightseeing

Plan a Weekend

Trip

SubTaskOf relation:

Figure 12: A task C broken into two subtasks C1 and C2

4.3.2 Sequence

Let C1 and C2 be the tasks “Find a Hotel” and “Learn about Facilities”

respectively. It is a common sense that a person must first specify a hotel

and then learn about the facilities provided. In this case, the temporal

order is represented as shown in Figure 13. Note that every Sequence

relation between two tasks introduces a number of parameter

bindings from the first task to the other.

Find a Hotel
Learn about

Facilities

Sequence relation:

Figure 13: Task C1 precedes task C2

4.3.3 OR

The OR construct defines an optional relation between two or more

tasks with respect to their common parent. Figure 14 provides an example

of a task C that is accomplished by at least one of the tasks C1 and C2. In

this case, C could be the task “Get info about a Mall”, while C1 and C2 could

be the tasks “Find Shops” and “Find Restaurants” (in the Mall).

Find shops Find Restaurants

OR relation:

Get info about a

Mall

 Figure 14: Task C is accomplished by at least one of

the tasks C1 and C2

4.3.4 CHOICE

Similarly to the previous one, the CHOICE construct describes an

exclusive option between two or more tasks with respect to their common

parent. For example, let we have the tasks C1 “Move to the Theatre”, C2

“Move by Bus” and C3 “Move by Train”. If we assume that a person cannot

combine both bus and train in order to reach the theatre, we represent

this knowledge as shown in Figure 15.

Move by Bus Move by Train

Choice relation:

Move to Theatre

X X

X

Figure 15: Task C is accomplished by exactly one of

the tasks C1 and C2

4.3.5 GROUP

As its name disclosures, the GROUP notation is used for defining

groups of tasks. It is just syntactic sugar and it does not introduce an

additional relation between tasks. A Group construct is equivalent to

an anonymous task which is the parent of all tasks included in the

group. Besides the plain SubTaskOf relationship, the children-tasks may

also share an OR or a CHOICE relationship with respect to their

anonymous parent and thus we define three different types of GROUPs:

SUB, OR and CHOICE groups. GROUPs can also be nested, i.e. a group

may have another group as child which may also have another one as

child and so forth.

GROUP constructs are included in ToDo just for helping authors

describe complex tasks without the need of drawing complicated graphs.

We make this clear in the following examples.

Let a task named “Sightseeing” that breaks into four subtasks: “Find a

Site”, “Learn about Events”, “Get Ticket Prices”, and “Move to Site”.

Assume that the output of the first subtask (the specified site) is used as

input in all other subtasks. In this case, in order to avoid drawing three

different Sequence relations between the corresponding pairs of tasks as

shown in Figure 16, the author can easily group the three latter tasks and

draw only a sequence relation between the first task and the group as

shown in Figure 16.

Find a Site
Learn about

Events

Sightseeing

Get Ticket Prices Move to Site

Figure 16: An example of multiple Sequence relations

Note that, although in this example the output of the task “Find a Site”

goes as input to all tasks included in the group, however, this is not

mandatory. In general, a Sequence between a task and a group

introduces at least one parameter passing from the first task to at

least one of the tasks included in the group. The same “at least”-

restriction holds also in the reverse case where the group precedes a task

in time of execution. We emphasize that the parameter passing, i.e. which

tasks take as inputs what outputs of other tasks, is not visualized in the

2D graph. In the context of TALOS, this binding of parameters is defined

by the authors through a simple form provided in the Task Authoring Tool

(see section 6.2).

Find a Site
Learn about

Events

Sightseeing

Get Ticket Prices Move to Site

SUB

Figure 17: Defining multiple Sequences using the GROUP construct

Consider another example. Let a task C “Watch a Movie” that is

accomplished by either accomplishing tasks C1 ”Find a Cinema” and C2

“Move to the Cinema” (where C1 is prior to C2) or one of the tasks C3 ”Find

a Video Club” and C4 “Learn TV Programme”. In this case, we can easily

describe the complex task hierarchy by using the GROUP notation as

shown in Figure 18. The left group is of type SUB, while the right one is of

type CHOICE.

Find a Cinema
Move to the

Cinema

GROUP Construct:

X

Find a Video Club
Learn TV

Programme

Watch a Movie

X

CHOICESUB

Figure 18: A complex task that breaks into two groups of subtasks

Note that the previous complex task (“Watch a Movie”) can also be

described using only the CHOICE and SubTaskOf relationships but in this

case the author must explicitly define two new parent-tasks (“Go to

Cinema” and “Watch at Home”), i.e. a new level in the overall task

hierarchy, as shown in Figure 19.

Find a Cinema
Move to the

Cinema

X

Find a Video Club
Learn TV

Programme

X X

Watch a Movie

X

Go to Cinema Watch at home

Figure 19: The previous example without GROUP constructs

Before continuing with the XML syntax of ToDo, we emphasize that

although each ellipse in the previous figures corresponds to a task

template as described in Figure 7, the underlying task parameters are

not visualized in 2D because the resulting DAG would be quite

difficult to handle.

4.4 The XML syntax of ToDo

This section introduces the tags used for denoting the entities of a

ToDo Task Ontology in XML format. By the time a ToDo ontology is

downloaded and stored in the mobile device, it is only regarded as

a template from which the task-oriented UI is generated. Thus, for

simplifying this process, we propose the following simple XML syntax.

We point out that, in the context of TALOS, all task parameters are

defined by the authors through a visual interface (a simple form) provided

in the Task Authoring Tool (see Section 6.2).

4.4.1 The <todo:model> tag

 This tags enclosures the whole body of the ToDo task ontology.

4.4.2 Tags denoting the Task Attributes

The tag used for defining a task is the <todo:task>. Each task has an

auto-generated ID and a user-provided Name which are unique for the

ontology a task belongs to. For example, the task “Find a Bar” is defined

as:

<todo:task ID=”1” name=”Find a Bar”>

 ...

</todo:task>

The non-functional properties (attributes) of a task are denoted by the

following tags which are always under a <todo:task> node:

 <todo:description>

This tag denotes the description of a task in the form of

unstructured text. For instance, the description of the task “Book

a Hotel Room” could be something like the following:

 <todo:task ID=”2” name=”Book a Hotel Room”>

...

<todo:description>

This task is for helping users who want to

find and book a hotel room

</todo:description>

...

 </todo:task>

 <todo:author>

This tag denotes the name of the task author. If a task has more

than one authors, then their names are given within different

<todo:author> tags. For example:

 <todo:task ID=”1” name=”Something”>

...

<todo:author>John Liagouris</todo:author>

...

</todo:task>

 <todo:publisher>

This tag denotes the name of the task publisher. For example:

 <todo:task ID=”1” name=”Something”>

...

<todo:publisher>IMIS</todo:publisher>

...

</todo:task>

 <todo:createdOn>

This tag denotes the date a task was created. The date is given

in YYYY-MM-DD format. For example:

 <todo:task ID=”1” name=”Something”>

...

<todo:createdOn>2009-11-13</todo:createdOn>

...

</todo:task>

 <todo:version>

This tag denotes the version of a task. From the application

perspective, the version number is automatically generated by

the time a task is created or updated. For example:

 <todo:task ID=”1” name=”Something”>

...

<todo:version>1.0</todo:version>

...

</todo:task>

 <todo:lang>

This tag denotes the language in which a task and all of its

parameters are given. Languages are given in abbreviations. The

following example stands for “English”:

 <todo:task ID=”1” name=”Something”>

...

<todo:lang>EN</todo:lang>

...

</todo:task>

4.4.2.1 The <todo:realizedBy> tag

This tag is optional and it is used to denote the URL of the Web

Service that realizes the task. It is always under a <todo:task> node. A

task may be realized by none or more than one Web Services. In the

latter case, the distinct URLs are given within different

<todo:realizedBy> tags. For example, the task “Book a Flight” can be

accomplished within two different Web Services that are denoted as

follows:

 <todo:task ID=”34” name=”Book a Flight”>

...

<todo:realizedBy>

http://www.airtickets.com

</todo:realizedBy>

<todo:realizedBy>

http://www.travelplanet24.com

</todo:realizedBy>

...

 </todo:task>

4.4.3 Tags denoting the Task Parameters

4.4.3.1 The <todo:preInformation> tag

This tag enclosures the tags <todo:input>, <todo:preCondition> and

<todo:preference> that denote functional properties of a task.

4.4.3.2 The <todo:input> tag

This tag denotes the inputs of a task which are given within

<todo:param> tags. Inputs may be optional. The latter is

denoted by the optional attribute in the <todo:param> tag.

Each input parameter is accompanied by its name

(<todo:pName>), XSD type (<todo:type>), an optional

description (<todo:pDescription>), and an optional

<todo:instantiatedBy> statement. For example:

 <todo:task ID=”1” name=”Something”>

...

 <todo:preInformation>

<todo:input>

<todo:param ID=”1” optional=”false”>

<todo:pName>Date/Time</todo:pName>

<todo:type>dateTime</todo:type>

<todo:pDescription>

The date and time (CET) of the visit

</todo:pDescription>

<todo:instantiatedBy>

<todo:module>CA</todo:module>

<todo:var>DateTime</todo:var>

</todo:instantiatedBy>

<todo:instantiatedBy>

<todo:module>User</todo:module>

<todo:var>UsrDateTime</todo:var>

</todo:instantiatedBy>

</todo:param>

 </todo:input>

 ...

 </todo:preInformation>

...

</todo:task>

4.4.3.3 The <todo:instantiatedBy> tag

The <todo:instantiatedBy> tag denotes the module from which the

corresponding input parameter will be instantiated during a normal

operation of the mobile application. As we explained in the previous

sections, we adopt a MVC-like architecture where the ToDo model

(expressed in XML) serves as the basis from which (a) the hierarchical

structure and (b) the basic functionality of the mobile UI are generated. In

order to achieve the latter, we distinguish three different TALOS-specific

instantiating modules:

 Context Aggregator (CA)

The CA [29] manages the user context (current location, date/time,

traveller type), the weather information, and some other

application-specific attributes. In our approach, the author can

specify that an input parameter is instantiated by the corresponding

method of the CA. We distinguish four such methods5 as described

in the following. Note that the datatypes of the variables (given

within <todo:var> tags) which store the outputs of these methods

are defined in the CA.xsd file provided in the Appendix of this

document.

5 These methods correspond to those supported in the current version of the
Context Aggregator module.

o getUserLocation(): This method returns the user current

location in the form of {Longitude, Latitude}. An input

parameter that is instantiated by this method is defined

along with the following <todo:instantiatedBy>

statement:

<todo:instantiatedBy>

 <todo:module>CA</todo:module>

 <todo:var>Location</todo:var>

</todo:instantiatedBy>

o getWeather(place,dateTime): This method returns the

weather information in the form of {Temperature,

Weather Type}. The default value of the place and

dateTime arguments are the location of the user and the

current date and time respectively. However, these

parameters can also be given manually by the user

through the UI. An input parameter that is instantiated by

this method is defined along with the following

<todo:instantiatedBy> statement:

<todo:instantiatedBy>

 <todo:module>CA</todo:module>

 <todo:var>Weather</todo:var>

</todo:instantiatedBy>

o getTravellerType(): This method returns the type of the

traveller. This is (optionally) given by the user when

planning a trip. In the context of TALOS we have defined

[30] 5 different types of travellers: {Backpack Traveller,

Business Traveller, Traveller with Family, Disabled

Traveller, ALL}. An input parameter that is instantiated by

this method is defined along with the following

<todo:instantiatedBy> statement:

<todo:instantiatedBy>

 <todo:module>CA</todo:module>

 <todo:var>TravellerType</todo:var>

</todo:instantiatedBy>

o getDateTime(): This method returns the current date and

time. An input parameter that is instantiated by this

method is defined along with the following

<todo:instantiatedBy> statement:

<todo:instantiatedBy>

 <todo:module>CA</todo:module>

 <todo:var>DateTime</todo:var>

</todo:instantiatedBy>

 Application (App)

An input parameter can be instantiated with data retrieved from the

local database. These data are retrieved through an SQL SELECT

query which is defined by the author. Note that such an SQL

query can include a user-provided values (denoted by the

prefix „Usr‟) from a preference parameter, as long as a task

input parameter (denoted with the symbol „$‟). For example,

an SQL statement that retrieves all available restaurants in a

specified city is defined as follows:

<todo:instantiatedBy>

 <todo:module>App</todo:module>

 <todo:var>

 Select POI.ID from POI where POI.type = “Restaurant”

and POI.City_ID in (Select City_ID from City where

Name=$City)

 </todo:var>

</todo:instantiatedBy>

 End-User (Usr)

 An input parameter can be instantiated manually by the end-user

through an input field in the UI. This is denoted as follows:

<todo:instantiatedBy>

 <todo:module>Usr</todo:module>

 <todo:var>ParameterName</todo:var>

</todo:instantiatedBy>

 Note that the ParameterName defined within the <todo:var> tags is

the name of the variable (arbitrarily given by the author) that will

be created by the controller in order to store the user-provided

value.

4.4.3.4 The <todo:pGroup> tag

In case a task takes as inputs a number of parameters some of which

must be instantiated all together, then the author can define groups of

parameters using the <todo:pGroup> tag. The distinct groups under a

<todo:input> node define an exclusive instantiation, whereas the

parameters within the same <todo:pGroup> tag must be

instantiated all together. For example, let a task “Find a Restaurant”

that takes as input the location of the user and a list of POIs

(restaurants). In case the user location is given either in the form of a city

name or in the form of longitude and latitude, and only one of the

previous parameter formats along with the list of restaurants are

necessary and sufficient for accomplishing the task, then this is denoted in

ToDo as follows:

<todo:task>

 <todo:ID>12</todo:ID>

 <todo:name>Find a Restaurant</todo:name>

 ...

<todo:preInformation>

 <todo:input>

 <todo:param ID=”1” optional=”false”>

 <todo:pName>City</todo:pName>

 <todo:type>city</todo:type>

 <todo:pDescription>

The location of the restaurant in the form of

a city name, e.g. “Berlin”.

</todo:pDescription>

 ...

 </todo:param>

 <todo:param ID=”2” optional=”false”>

 <todo:pName>Coordinates</todo:pName>

 <todo:type>coords</todo:type>

 <todo:pDescription>

The longitude and latitude of the user

location that will be used for finding

restaurants nearby.

</todo:pDescription>

<todo:instantiatedBy>

 <todo:module>CA</todo:module>

 ...

</todo:instantiatedBy>

 </todo:param>

 <todo:param ID=”3” optional=”false”>

 <todo:pName>Restaurants</todo:pName>

 <todo:type>POI</todo:type>

 <todo:pDescription>

A list of restaurants

</todo:pDescription>

<todo:instantiatedBy>

 <todo:module>App</todo:module>

 ...

</todo:instantiatedBy>

 </todo:param>

 <todo:pGroup>

 <todo:pMember>1</todo:pMember>

 <todo:pMember>3</todo:pMember>

 </todo:pGroup>

 <todo:pGroup>

 <todo:pMember>2</todo:pMember>

 <todo:pMember>3</todo:pMember>

 </todo:pGroup>

 </todo:input>

 ...

 </todo:preInformation>

 ...

</todo:task>

4.4.3.5 The <todo:preCondition> tag

This tag is used for defining a precondition, i.e. a condition that must

hold in order for the task to be accomplished successfully. Preconditions

are divided into: (a) logical expressions over the task inputs, denoted by

the argument type=”expr”, and (b) simple notices to the end-users,

denoted by the argument type=”msg”. Note that any variable included

in a precondition of the first type (logical expression) must always

be an input of the corresponding task. For instance, the task “Visit an

open Market” may require good weather conditions. This precondition is

specified in ToDo as follows:

<todo:task ID=”11” name=”Visit an open Market”>

...

<todo:preInformation>

<todo:input>

<todo:param ID=”1” optional=”true”>

<todo:pName>Weather</todo:pName>

<todo:type>weather</todo:type>

<todo:pDescription>

The type of the weather for a specified

place, date and time.

</todo:pDescription>

<todo:instantiatedBy>

<todo:module>CA</todo:module>

<todo:var>Weather</todo:var>

</todo:instantiatedBy>

 </todo:param>

...

</todo:input>

<todo:preCondition type=”expr”>

 CA.Weather=’Sunny’

</todo:preCondition>

...

</todo:task>

Consider another example. The task “Book a Flight” obviously requires

a credit card. Hence, an author can include this notice as a precondition

when defining the task just like in the following example:

<todo:task ID=”17” name=”Book a Flight”>

...

<todo:realizedBy>

http://www.air-tickets.com

</todo:realizedBy>

...

<todo:preInformation>

<todo:preCondition type=”msg”>

You need a credit card in order to proceed

</todo:preCondition>

...

</todo:task>

4.4.3.6 The <todo:preference> tag

This tag is used for denoting a user preference, i.e. a parameter that

is optionally taken into account when guiding a user to accomplish a task.

Preferences break into logical expressions over (a) the task inputs and (b)

the POI-related attributes as defined in the user‟s database, i.e. the

database of the mobile device [30]. For example, in case the author wants

to give the users the ability to search for an affordable restaurant, then

this is specified in ToDo as follows:

 <todo:task ID=”1” Name=”Find a Restaurant”>

 ...

<todo:preInformation>

<todo:input>

 ...

</todo:input>

<todo:preference>

 POI.Price <= Usr.Price

</todo:preference>

...

 </todo:task>

Note that the the name of the variable (arbitrarily given by the author)

that will be created by the controller in order to store the user-provided

value is denoted with the prefix Usr.

4.4.3.7 The <todo:postInformation> tag

This tag enclosures the tags <todo:output>, <todo:postCondition> and

<todo:effect> that denote functional properties of a task.

4.4.3.8 The <todo:output> tag

This tag denotes the outputs of a task which are given within

<todo:param> tags. As in the case of inputs, outputs may be optionally

produced according to the current context and content. Each output

parameter is accompanied by its name (<todo:pName>), XSD type

(<todo:type>), and an optional description (<todo:pDescription>). For

example:

<todo:output>

<todo:param ID=”1” optional=”false”>

<todo:pName>POIs</todo:pName>

<todo:type>POI</todo:type>

<todo:pDescription>

A list of available points of interest

matching the input criteria

</todo:pDescription>

</todo:param>

</todo:output>

4.4.3.9 The <todo:postCondition> tag

This tag denotes a postcondition that must hold after the task is

accomplished. Postconditions are logical expressions over (a) context-

related parameters and (b) task-specific output parameters. For instance,

the user‟s location when arrived at a park must be equal to the location of

the park. Note that the location of the park in the following

example must have been defined as output of the respective task.

<todo:task ID=”1” Name=”Move to the park”>

 ...

<todo:postInformation>

<todo:output>

 ...

</todo:output>

<todo:postCondition>

 CA.Position = $Park.Location

</todo:postCondition>

...

 </todo:task>

4.4.3.10 The <todo:effect> tag

This tag denotes the effect of a task. Effects are simple notices to the

end-users specified a priori by the authors. For example:

<todo:effect>

 Confirmation receipt is delivered by email

</todo:effect>

4.4.4 The <todo:extends> tag

This tag is optional and it is used only in case the author wants to

import and use in a new Task Ontology a task that is already defined in an

existing Task Ontology. A task may extend at most one task of

another Task Ontology. For example, if the task “Move from A to B” is

defined in the “Transportation” ontology and the author wants to import it

in a new ontology named “Culture” in order to reuse it, then this is done

by adding the <todo:extends> tag as follows:

<todo:task ID=”18” name=”Move to the Museum”>

 <todo:version>1.0</todo:version>

 ...

 <todo:extends>

 <todo:impName>Move from A to B</todo:impName>

 <todo:impVersion>1.0</todo:impVersion>

 <todo:model>Transportation</todo:model>

</todo:extends>

...

</todo:task>

Note that the task “Move to the Museum” inherits all parameters

specified in the definition of the task “Move from A to B”. The imported

task is defined by its name (<todo:impName>) and version

(<todo:impVersion>), and also by the name of the ontology it belongs to.

The latter is denoted by the <todo:model> tag. Although the author is not

able to modify the inherited parameters, however, he/she is able to

extend the imported task if needed by simply adding new parameters

under <todo:preInformation> and/or <todo:postInformation> tags.

We point out that, from the application perspective, when a user clicks

on an imported task, the mobile application (a) instantiates the task with

the input parameters (if any) and (b) guides the user according to the

task hierarchy that is defined in the ontology the imported task belongs

to. In other words, an imported task is accomplished by its subtasks

(if any) as defined in the original ontology, i.e. the one from which

it is imported. Therefore, the only additional tasks imported along with

the imported one are its children. On the other, the only relations

imported along with the imported task are those between the latter and its

children (e.g. subsumption), and also the relations among these children

(e.g. sequence). In case the imported task (resp. any of its subtasks) has

a relation with another task (resp. with a task that is not defined to be a

child of the imported task) in the original ontology, then this relation is

omitted. A concrete example of this kind is provided in Section 4.6.

4.4.5 Task Relations

The tags used for denoting relations between tasks are depicted in

Table 2. In a ToDo Task Ontology we have four types of relations between

tasks (SubTaskOf, Sequence, OR, and CHOICE). As mentioned in the

previous section, the GROUP construct (described in Section 4.5.2.5) is

just syntactic sugar. It does not introduce a new kind of relationship

between tasks.

4.4.5.1 The <todo:subTaskOf> tag

This tag defines a subsumption relationship between two or more

tasks. The ID of the parent-task is included in the <todo:subTaskOf> tag,

while the ID(s) of the children-tasks are given within <todo:member> tags

under the <todo:subTaskOf> node in any order. For example, the axiom

“Task 1 and Task 2 are subtask of Task 3” is expressed as:

<todo:subTaskOf ID=”3”>

 <todo:member>1</todo:member>

 <todo:member>2</todo:member>

</todo:subTaskOf>

or

<todo:subTaskOf ID=”3”>

 <todo:member>2</todo:member>

 <todo:member>1</todo:member>

</todo:subTaskOf>

4.4.5.2 The <todo:sequence> tag

This tag defines a sequence between two tasks. It is always under a

<todo:chain> tag that is explained in the following. The two task IDs of a

sequence are given within <todo:member> tags in a specific order from the

first task to the second one. The passed parameters are given with

<todo:sourceParam> and <todo:targetParam> tags under the

<todo:dataflow> node. For example, if “Task 1 is prior to Task 2” and

the output “Cinema” of the first task is passed as input “POI” into the

second task, then this relation is expressed as:

 <todo:sequence>

<todo:member>1</todo:member>

<todo:member>2</todo:member>

<todo:dataflow>

 <todo:sourceParam>Cinema</todo:sourceParam>

 <todo:targetParam>POI</todo:targetParam>

</todo:dataflow>

 </todo:sequence>

Note that “Cinema” and “POI” are parameter names corresponding to

tasks 1 and 2 respectively. These parameters have already been specified

by the author(s); possibly along with other input and output parameters

of the two tasks which are not included in a dataflow. We emphasize that

the relation between Source and Target parameters within a specific

<todo:dataflow> tag is bijective (1:1) and that a sequence between two

tasks may introduce more than one dataflows which in this case are given

within different <todo:dataflow> tags.

One (or more) sequences between two (or more) tasks belong to a

so-called sequence chain. More specifically, taking into account that tasks

in ToDo are reusable, each sequence between two tasks belongs to at

least one chain and, therefore, different chains may have “intersections”,

i.e. they may include common tasks. Each sequence chain has a unique ID

that is denoted in the <todo:chain> tag. For instance, according to the

previous example, in case there is also a sequence between the task 2

and another task, let 3, and both these sequences belong to the same

chain, then this is specified in ToDo as follows:

<todo:chain ID=”13”>

<todo:sequence>

 <todo:member>1</todo:member>

 <todo:member>2</todo:member>

 <todo:dataflow>

 <todo:sourceParam>Cinema</todo:sourceParam>

 <todo:targetParam>POI</todo:targetParam>

 </todo:dataflow>

</todo:sequence>

<todo:sequence>

 <todo:member>2</todo:member>

 <todo:member>3</todo:member>

 <todo:dataflow>

 <todo:sourceParam>Coords</todo:sourceParam>

 <todo:targetParam>XY</todo:targetParam>

 </todo:dataflow>

</todo:sequence>

</todo:chain>

4.4.5.3 The <todo:or> tag

This tag defines an OR relationship between two or more tasks with

respect to their (common) parent. The ID of the parent-task is always

included in the <todo:or> tag. The IDs of the children-tasks are given

within <todo:member> tags in any order. For example, the axiom “Task 1

is accomplished by either accomplishing Task 2 or Task 3 or both” is

expressed as:

<todo:or ID=”1”>

 <todo:member>2</todo:member>

 <todo:member>3</todo:member>

</todo:or>

 or

<todo:or ID=”1”>

 <todo:member>3</todo:member>

 <todo:member>2</todo:member>

</todo:or>

4.4.5.4 The <todo:choice> tag

This tag defines a CHOICE relationship between two or more tasks

with respect to their (common) parent. The ID of the parent-task is

always included in the <todo:choice> tag. The IDs of the children-tasks

are given within <todo:member> tags in any order. For example, the axiom

“Task 1 is accomplished by accomplishing one of the Tasks 2 and 3” is

expressed as:

<todo:choice ID=”1”>

 <todo:member>2</todo:member>

 <todo:member>3</todo:member>

</todo:choice>

 or

<todo:choice ID=”1”>

 <todo:member>3</todo:member>

 <todo:member>2</todo:member>

</todo:choice>

4.4.5.5 The <todo:group> tag

This tag defines a GROUP construct including two or more tasks. As

already mentioned, this construct is just syntactic sugar and it is used for

helping authors easily describe complex relationships between tasks (see

Section 4.3). GROUP defines a task hierarchy by implicitly introducing an

anonymous parent-task whose ID is always included in the <todo:group>

tag. The IDs of the children-tasks are given within <todo:member> tags.

The relationship among the grouped tasks is denoted in the <todo:group>

tag and it can be one of the previously described relationships (SUB, OR,

and CHOICE). For example, the axiom “Task 1 is accomplished by at least

Task 2 or one of the Tasks 3 and 4” is expressed as:

<todo:group ID=”0” type=”choice”>

 <todo:member>3</todo:member>

 <todo:member>4</todo:member>

</todo:group>

<todo:or ID=”1”>

 <todo:member>2</todo:member>

 <todo:member>0</todo:member>

</todo:or>

where ID=0 is the ID of a new anonymous task that is implicitly defined

as the parent of Tasks 3 and 4.

Tag Description

<todo:subTaskOf>

Defines a subtask relation between two or more

tasks. The task whose ID is included in the

<todo:subTaskOf> tags is the parent-task. The IDs

of the children-tasks are given within

<todo:member> tags under the <todo:subTaskOf>

node in any order.

<todo:sequence>

Defines a time ordering between two tasks. Each

sequence belongs to at least one chain denoted by

the <todo:chain> tag. The IDs of the tasks in the

sequence are given within the <todo:member> tags

under the <todo:sequence> node in a specific order,

i.e. from the first task to the second one. Each

distinct parameter passing is denoted within

<todo:sourceParam> and <todo:targetParam> tags

under a <todo:dataflow> node.

<todo:or>

Defines an optional relation between two or more

tasks with respect to their parent. The ID of the

parent-task is always included in the <todo:or> tag.

The IDs of the other (two or more) tasks are given

within <todo:member> tags under the <todo:or>

node in any order.

<todo:choice>

Defines an exclusive option between two or more

tasks with respect to their parent. The ID of the

parent-task is always included in the <todo:choice>

tag. The IDs of the other (two or more) tasks are

given within <todo:member> tags under the

<todo:choice> node in any order.

<todo:group>

Defines a group of two or more tasks that is

captured by an anonymous task. The ID of the

anonymous parent-task is always included in the

<todo:group> tag along with the type of the group

(SUB, OR, CHOICE). The IDs of the (two or more)

children-tasks are given within <todo:member> tags

under the <todo:group> node.

Table 2: XML tags for denoting Task Relations in ToDo

4.5 The logical formalism underneath ToDo

We have already made clear that we do not want just a modeling

language such as UML, but a graphical language with firm theoretical

roots. Automated reasoning over task related knowledge requires the

existence of firm semantics or, in other words, the existence of logic

within the model. In this section we describe the logical formalism ToDo is

based on, i.e. Description Logic6.

4.5.1 A Description Logic Knowledge Base

A knowledge database (KB) in DL comprises of two components: the

TBox and the ABox [31]. The TBox introduces the terminology, i.e. the

vocabulary for representing the domain of knowledge, while the ABox

consists of assertions about named constants in terms of this vocabulary.

As far as the vocabulary of knowledge is consented, there are three

basic “ingredients”: the concepts, the relations and the constants.

Formally, in Description Logics, the initial concepts considered in modeling

the domain, called atomic concepts, are unary predicates. Analogously,

binary predicates called atomic roles represent the initial relations. The

idea of constants is captured by the individuals. Intuitively, the notion of a

concept is considered to semantically group a number of constants with

common properties, i.e. it corresponds to a set of individuals. In order to

represent the properties a set of individuals has, the notion of roles is

introduced. A role corresponds to a set of pairs of individuals which are

related with each other by this role. Apart from representing and storing

both terminologies and assertions, the Description Logic systems also

involve inference mechanisms that reason about the base elements.

Among the building blocks of description logic, atomic concepts are

denoted by capital A, atomic roles by capital R and individuals by a and b.

Complex descriptions can be built from them using concept constructors.

The concepts defined using such constructors are denoted by capitals C

and D.

All description languages in DL are defined as extensions of the basic

description language AL and are distinguished by the constructors they

provide. In this document, we present the ALCQ language whose features

are adequate for understanding the following sections.

6 A similar idea of translating UML models into Description Logic in order to
exploit the automated reasoning procedures of the latter is introduced in [32]
and [33].

Concept descriptions in ALCQ are formed according to the following

syntactic rule:

C, D → A | Τ | |¬C | C Π D | R.C | R.C |R≤n.C |R≥n.C

where:

 Τ is

the universal concept of the world described, i.e. the concept

that contains all the individuals of the world.

 

is the bottom concept of the world described, i.e. it contains no

individuals.

 ¬C

is the description constructed by the negation of the (complex)

concept C. Intuitively, concept ¬C captures all individuals of

the knowledge base that do not belong to C.

 C

D is the concept defined using disjunction. It consists of the

individuals that are grouped by concept C or D. For example,

the concept Male Female contains all the individuals that are

males or females. Intuitively the previous concept could group

all humans.

 C Π

D is the concept defined using intersection. It consists of the

individuals that are grouped by concept C and also by D. For

example, the concept Human Π Female contains all the

individuals that are humans and also females. Intuitively the

previous concept could group all the women individuals.

  R.

C is the value restriction constructor that defines a new class

containing the instances whose all participations in the role R

are with instances grouped by class C. For example, the

concept  hasChild.Male contains those individuals that when

they participate in pairs of individuals grouped by role

hasChild, the second individual is always corresponding to

concept Male. Intuitively the example denotes the individuals

that have children which are all males, i.e. individuals that

have only sons. If C is the top concept, we write  R and not

 R.T.

 R.

C is the full existential quantification constructor that defines a

class whose instances have participation in a role R with at

least one instance of class C. For example, the concept

R.hasChild.Parent consists of those individuals that are

participating in hasChild role with at least one individual of

concept Parent, i.e. individuals that have at least one child

which is also a parent (which means complex expression

denoting grandparents). If C is the top concept, we write R

and not R.T.

 R≤

n.C is the at most n qualified number restriction constructor

that defines a class containing the instances that participate at

most n times in role R with instances of the class C. For

example, the concept R≤5.hasChild.Human consists of the

individuals that have 5 or less children that are humans.

 R≥

5.C is the at least n qualified number restriction constructor

that defines a class containing the instances that participate at

least n times in role R with instances of the class C. For

example, the concept R≥5.hasChild.Human consists of the

individuals that have 5 or more children that are humans.

All the above explanations are actually the definitions of the semantics

of ALCQ constructors in terms of natural language. In order to proceed

with the formal definitions of these semantics we must introduce the

notion of interpretations.

An interpretation I consists of a structure (ΔI , ∙I) where ΔI is the

domain of interpretation and ∙I is the interpretation function. The

interpretation function associates a simple concept C with a set CI  ΔΙ

and an atomic relation R with a binary relation RI  ΔΙ X ΔΙ. The

interpretation of the top concept is the whole domain, i.e. TI = ΔI. The

interpretation function is extended to concept descriptions by the following

inductive definition:

ΤΙ = ΔΙ

 Ι = ø

(¬C)Ι = ΔΙ \ CΙ

(C D) Ι = CΙ  DΙ

(C Π D) Ι = CΙ  DΙ

(R.C) Ι = {a  ΔΙ |  b. (a , b)  RΙ → b  CΙ}

(R.C) Ι = {a  ΔΙ | b. (a , b)  RΙ}

(R≤n.C) Ι = {a  ΔΙ |{ b  CΙ | (a , b)  RΙ } ≤ n}

(R≥n.C) Ι = {a  ΔΙ |{ b  CΙ | (a , b)  RΙ } ≥ n}

We point out that the above set-theoretic semantics of DL are known

in literature as Tarski-style semantics. The problem of automated

reasoning with respect to these semantics is addressed in Section 4.4.3.

Having this basic knowledge about what a DL knowledge base is, we

can now proceed with expressing ToDo features in Description Logic.

4.5.2 Expressing a ToDo Task Ontology in Description Logic

In order to express ToDo in Description Logic, tasks are interpreted as

classes grouping objects that share a common set of attributes (input,

output etc.). Objects in our case represent the actual activities of the

users. Analogously to the terminology of DL, an object of type C is called

individual or instance of the task C.

In terms of functionality, task instances, i.e. activities, are created

according to the user profile (context) and preferences (context and

content) as specified from his/her interactions with the interface of the

mobile device. To be more specific, an example of an instance of the task

“Visit a Museum” is something like “Visit the Museum of Acropolis”. In this

sense, when a user decides the museum he/she wants to visit, activities

like “Visit the Louvre” or “Visit the Guggenheim Museum in NY” are

created and classified under the class “Visit a Museum”.

In addition, task attributes are represented in DL by object and

datatype properties. For instance, if the input for the task “Find a

Museum” is a list of museums (i.e. individuals) from a DL-based domain

ontology like the one in Figure 8, this attribute is represented by an object

role having as domain a set of activities classified under the class “Find a

Museum” and as range a set of individuals that represent museums. On

the other hand, attributes such as TaskName are represented by datatype

properties connecting the instance (activity) and its attribute (its name).

Obviously, in this case, the range of the property is an XML datatype

(string).

Temporal relations between tasks are denoted through relations

between the corresponding instances. For this purpose we introduce the

following (reserved) atomic roles:

 Rbef which denotes that an instance is prior in time of execution

to another one. Considering the tasks “Choose Pizza” and “Order

Pizza”, we can write Rbef(a,b) where a and b are the

corresponding instances.

 Raft which denotes that an instance follows another one in time

of execution. Note that Raft is the inverse of the role Rbef and

thus, continuing with the previous example, we can write

Raft(b,a).

 Rsyn which denotes that two instances are concurrently executed.

Every pair of instances drawn from the tasks “Boil Pasta” and

“Make Sauce”, as defined in Section 4.3, is connected through

Rsyn. Rsyn is a symmetric role which means that it is inverse with

itself.

All of the above roles are disjoint one another and also transitive. The

former means that if two task instances are connected through one of

these roles, then the same (ordered) pair cannot be connected through

any of the remaining two. The latter means that if, for example, both

Rsyn(a,b) and Rsyn(b,c) exist in a knowledge base, then we can also infer

Rsyn(a,c).

Such roles that capture generic temporal knowledge are defined in

OWL-Time ontology [34] and thus, when translating a ToDo task ontology

in OWL, we can represent these temporal relations by importing the

corresponding roles from OWL-Time.

The representation of Or and Choice relations in DL requires that we

also introduce the following atomic role:

 Racc which denotes that an instance of a task is indirectly

accomplished by an instance of another task. In our previous

example, an instance, let a, of the task “Get info about a Mall” is

accomplished by an instance b of the task “Get info about

Discounts” and thus we can write Racc(a,b).

We are now able to present how complex tasks of ToDo are

represented formally in DL:

 Axiom C1 precedes C2 is transformed into: T ( Rbef.C2) Π

( Raft.C1)

 Axiom C1 is syn with C2 is transformed into: T ( Rsyn.C2) Π

( Rsyn.C1)

 Axiom C1 ≡ C2 OR C3 is transformed into: C1 ≡ Racc Π Racc (C2

 C3)

 Axiom C1 ≡ C2 XOR C3 is transformed into: C1 ≡  ≤1Racc Π Racc

(C2 C3)

In the previous OR and XOR constructs, tasks C2 and C3 cannot have a

temporal relationship. Thus, in each case, the following three axioms

are also added in the knowledge base:

( Rbef.C2) Π ( Raft.C3) 

( Rbef.C3) Π ( Raft.C2) 

( Rsyn.C2) Π ( Rsyn.C3) 

We have already mentioned that each task attribute is represented in

DL through an atomic property. In ToDo we distinguish two kinds of task

properties:

 Object Properties

Each object property of a task is represented by an object role.

If the attribute defined by the property is classified in a Domain

Ontology, then this is expressed in DL as follows:

o T (Rprop) Π ( Rprop.D), where Rprop is the role

representing the object property (e.g. HasInput) and D is

a class of a Domain Ontology including the corresponding

object. (e.g. Museum).

 Datatype properties

Each datatype property of a task is represented by a datatype

role. If the attribute defined by the property is of a specific

datatype, then this is expressed in DL as follows:

 T (Rprop) Π ( Rprop.AttributeType), where Rprop is the

role representing a datatype property (e.g.

HasTaskAuthor) and AttributeType is the XML data type of

the property (e.g. string).

Obviously, in both of the above cases, if the property defines at most

one attribute, then we pose the corresponding at most one restriction in

the Rprop clause of the previous axioms.

As far as the subtask relation is concerned, we follow exactly the same

notations as in DL. For instance, if a task C1 subsumes another one, let C2,

then we write C2 C1. However, we point out that, in ToDo, breaking a

task into multiple subtasks is regarded as a complete subsumption. For

example, if a task C1 breaks into subtasks C2 and C3, then we assume that

in order for C1 to be accomplished both of its subtasks must be

accomplished. Thus, we write C1 (Racc.C2) Π (Racc.C3).

4.5.3 Reasoning with Knowledge Bases

In this section we provide the reader with two representative

examples of how the automated reasoning capabilities of Description Logic

can be used in the context of TALOS.

Example 1: Identify inconsistencies within a task model

The model in Figure 15 defines a task C which precedes task C3 in time

of execution. The same holds for task C4 that is defined as prior to task C2.

However, tasks C2 and C4 are subtasks of C and C3 respectively and thus

they inherit the temporal relationship established between their “parents”.

According to what we described in the previous section, if a is an instance

of C2 and b an instance of C4, then the following two axioms are added in

the knowledge base:

1. Rbef(a,b)

2. Raft(a,b)

Obviously, these axioms contradict one another as a cannot be prior to

b and at the same time posterior. This is a representative example of how

a syntactically correct task model may “hide” semantic inconsistencies.

Such inconsistencies can be easily detected using a Description Logic

reasoner like Pellet [15].

We point out that an inconsistent Task Model as the one in Figure 20

may result in undesirable functionality of the user‟s interface. Sequence

between tasks is usually accompanied with a flow of data. In our case, the

output of task C4 may be used as input for the task C2. However, as C is

executed before C3, when a user tries to perform task C2, which is one of

the subtasks of C, the application may enter a non-stop loop where C2

waits for data from C4 and reverse.

Figure 20: Inconsistent Model

Example 2: Recommendation of services and resources

Assume that we want to build a high-quality recommendation service

that takes into account various aspects of the available information; from

user‟s location, profile and preferences to weather reports and popularity

of the supported services. Instead of developing algorithms for evaluating

complex conditions, we are able to describe both context and content in

Description Logic and take full advantage of a so-called declarative

approach.

In the proposed framework, the recommendation service is regarded

as an “intelligent” system that comprises of two basic modules:

1. A DL knowledge base that stores information about context and

content in the form of axioms.

2. A reasoner able to answer queries over this set of axioms.

Answers to these queries are the actual recommendations, i.e.

a number of resources fulfilling the constraints defined in the

query.

The key feature of such a DL-based system is that all reasoning tasks

are performed through the same algorithm, named Tableau procedure. In

addition, as highly-optimized Tableau-based implementations already

exist, the only thing needed to provide such an infrastructure is to

describe the existing data in Description Logic, i.e. in OWL. For a similar

approach followed by NTT DoCoMo, see [17].

In this section we do not go further with describing the Tableau

procedure. The following example is given just to show how a

recommendation service can be reduced in answering complex

(conjunctive) queries over a Description Logic knowledge base.

Assume that someone is on a business trip in Barcelona and looks for a

traditional restaurant to have dinner with his/her colleagues. In case there

is an appropriate DL-based domain ontology featuring the “Places to eat”,

when he/she asks for recommendation, the following (simplified) SPARQL

[35] query is posed to the system:

SELECT ?name

WHERE

 { ?x hasName ?name .

 ?x typeOf Restaurant .

 ?x locatedIn Barcelona .

 ?x suitableFor y .

 ?y typeOf BusinessMeeting .

 ?x serves z .

 ?z typeOf TraditionalFood }

The result-set of the above query will contain the names of all

available traditional restaurants (captured by the variable x) located in

Barcelona and rated as suitable for business meetings.

We point out that the previous query does not imply any reasoning

procedures. In fact, reasoning services are performed on TALOS server

and thus they are only provided in the existence of internet access.

However, the interesting thing here is that all necessary reasoning tasks

can be done on TALOS server (every time the ontology is updated) and

the resulting serialized ontology can then be stored (in RDF format) for

offline querying in the mobile device. As for the latter, the sceptic reader

can refer to [36] and [37] that present and evaluate an interesting

approach for storing and retrieving millions of RDF triples using the

iPhone.

4.6. Example

Figure 19 provides an example of a simple Task Ontology built with

ToDo graphical notations. The presented ontology is for guiding users who

want to find accommodation and/or a place to entertain themselves. The

XML representation of the model is given in APPENDIX II. We have already

pointed out that the underlying task parameters are not visualized in 2D.

Instead, they are managed throught the Task Properties panel of TOAT

(see Section 6.4). The groups in this example are used in order to avoid

drawing many OR and Sequence relations between tasks.

From the application perspective, each task of the following model is

instantiated by context and content (i.e. becomes an activity) while the

user interacts with the interface of the mobile device. For example, when

a user clicks to find a hotel, the list provided by default will only include

hotels close to him/her. In such a case, the location of the user is

captured by the Context Aggregator Module (see [29]).

The following model also defines the functionality of the UI. As shown

in the XML file in the APPENDIX II, the task “Find out Prices” takes as

input the output of the task “Find a Restaurant”. When the user clicks on

the task “Find out Prices” without having specified a restaurant first, the

interface can redirect him/her to the task “Find a Restaurant” that is

defined as prior to the selected one. In terms of functionality, this implies

that we want a fully operational interface. Following another approach, we

could enable tasks only in case they do not depend on others that are not

already instantiated.

Eat and DrinkSleepGet a City Overview Sightseeing ShoppingTravel to/in the City

Find a Hotel Find a Hostel Find an Appartment

Make a Booking

Find a Camping

Task

Entertainment

Find a Restaurant Find a Snack-bar Find a Cafe

Get Operating Days/Hours

Find a Bar Find a Club

Find out Prices Make a Reservation

OR OR

OR

Figure 21: An example of a ToDo Task Ontology

5 Task Ontology Lifecycle

This section provides a clear description of the Task Ontology Lifecycle,

i.e. the distinguished states to which a Task Ontology comes while

being used by the participants in the TALOS system. We point out

that our intention is not to analyze thoroughly all the potential activities of

each participant and thus we only address those that are adequate to

define, alone or in relation with others, a state in the ontology lifecycle.

Before continuing with the detailed description of the diagram provided

in Figure 22, we first clarify some terms that are essential for

understanding the following. These terms are:

 Task

As already mentioned, a task reflects what an end-user wants

to do in a high-level layer of abstraction, e.g. “Eat at a

restaurant”. Each task is accompanied by a set of attributes

(input, output, precondition etc.) and is instantiated by content

(and context) in order to become an activity. For example, an

activity related to the previous task is something like “Eat at

TGI Fridays in Athens”.

 Task Ontology

A Task Ontology amounts to a formal specification of a user‟s

tasks. In other words, it is a model of a user‟s tasks with firm

syntax and semantics. For more information about the notion of

Task Ontology in TALOS please refer to Section 2.2.13.

 Task Ontology Database (TODB)

Each Task Ontology can be expressed in XML-like syntax and

stored in a relational database. The TODB is the central

database in TALOS Server that keeps all versions of every

Task Ontology.

 Task Ontology Author (TOA)

A TOA is the person who designs the Task Ontology using the

graphical tools provided in a TALOS-specific editor called Task

Ontology Authoring Tool (TOAT).

 Content Manager (CM)

A CM is the person who manages the content and decides which

resources (text or POIs) are appropriate for specific tasks.

Besides the content existing in a travel guide, other resources

can be dynamically derived from the web (through

scrapping) and assigned to the tasks of a Task Ontology

using an editor called Annotation Tool (AT). We point out that

the corresponding web content is also stored in CB.

 Content Base (CB)

Similarly to the case of Task Ontologies, content can also be

structured with XML and stored in a relational database. The CB

is the central database in TALOS Server that stores (a)

unstructured content in the form of text, maps, images etc.,

(b) geo-referenced (structured) content as Points of

Interest (POIs), and (c) context-related information that

is used for filtering the corresponding resources in CB according

to a set of context attributes).

 Expert

An expert is either a TOA or a CM.

 End-User

An end-user is the user of the mobile handset which, in our

case, is either the iPhone or an e-book reader.

 Idle Task Ontology (ITO)

An ITO is a Task Ontology uploaded on TALOS Server with no

content assigned to its tasks. The ITO cannot be used by the

end-users until a CM assigns content to its tasks.

 Operational Task Ontology (OTO)

When a CM assigns content to the tasks of a Task Ontology and

uploads it on TALOS server, the corresponding Task Ontology is

called operational. From the view point of the end-user, an OTO

is what he/she follows in order to reach the appropriate

content and services.

The UML Activity Diagram [23] provided in Figure 22 depicts the major

activities of the participants in TALOS system. Thus, the diagram is divided

into four parts, swimlanes in UML terms: one for the Author of the Task

Ontology, one for TALOS Server, one for the Content Manager, and one

for the End User.

The presented diagram illustrates only a normal use case scenario and

does not include any of the potential problems (e.g. user authentication

failure, database crash etc.). In addition, we emphasize that the specified

activities are based on the assumption that we deal with a real-world

environment where there are many Task Ontology Authors,

Content Managers, and End Users. The role of each distinct participant

is described in the following:

 Author of the Task Ontology

The TOA is responsible for performing the following tasks:

 Design a new Task Ontology

 Edit an existent Task Ontology (ITO or OTO)

 Upload a Task Ontology on TALOS Server

As shown in Figure 22, editing an existing Task Ontology requires a check

for new versions in TALOS Server. This is necessary due to the existence

of many TOAs. We have already mentioned that our analysis is focused on

the development of a collaborative environment where many TOAs can

work on the same or different Task Ontologies. Following this general

idea, we can assume that when an author uploads a Task Ontology on

TALOS Server, there may also be other authors who want to download the

ontology, review it or make changes on it. Thus, in order tosynchronize

TOAs‟ work, we have to implement a check-in/check-out control

mechanism before every update in the local version of a Task Ontology.

Note that in case a TOA downloads an OTO and changes it, by the

time he/she uploads it back on TALOS server, the Task Ontology is

then considered as ITO and not OTO. This means that it cannot be

used by end-users until a CM assigns content to its tasks. Although it may

seems strange, this approach is imposed by the difficulty in handling the

evolution of Task Ontologies. We come back to this issue in the following.

 TALOS Server

TALOS Server keeps all versions of every Task Ontology in Task

Ontology Database (TODB). We argue that all versions for Task Ontologies

must be stored in TALOS Server due to the following reasons:

 Compatibility with the OTOs used by the end-users

When downloading an OTO, the user of the mobile device may

decide to include only a part of the assigned content and not all

of it. In such a case, the rest of the content can be downloaded

gradually during the use of the Task Ontology. Thus, a

downloaded OTO cannot be overwritten on TALOS Server until

all end-users have updated their local copies.

 Ability to rollback to older versions

A version history of the experts work can be very useful when,

for some reason, one needs to refer to an older version of a

project.

End UserContent Manager (CM)TALOS ServerAuthor of the Task Ontology (TOA)

Update OTO

Use stored OTO

[not exist]

[edit]

[store]

[upload]

[otherwise]

Authenticated

Open Authoring Tool

Design Task Ontology Open Project

Check for new versions

Edit Task Ontology Download Task Ontology

Authenticate

[author] [content manager]

Store Project

Store Content in CB

Store Task Ontology in TODB

Download Operational Task Ontology

[user]
Store OTO

Download additional Content

[exist]

[upload]

[create] [edit]

Connect to TALOS Server

[connect]

[connected]

[connected]

[not connected]

[not connected]

[not exist]

[edit]

[store]

[otherwise]

Open Annotation Tool

Create ProjectOpen Project

Check for new versions

Edit Content Download Project

Store Project

[exist]

[create][edit]

Connect to TALOS Server

[connect]

[connected]

[not connected]

[not connected]

[connected]

Connect to TALOS Server

Connected Connected

Download Task Ontology

Assign Content

[connected]

[not connected]

<no send action>

Operational Task Ontology

Connected

[existent][new]

<no receive action>

[connected]

[not connected]

[no internet access]

[internet access]

[download later]

Access Web Services

[internet access]

[no internet access]

[connected]

[not connected]

[nothing new]

[otherwise]

Upload Task Ontology

Upload Content

Notify

Receive

Figure 22: TALOS Activity Diagram

 Content Manager

The CM is responsible for performing the following tasks:

 Organize content

 Assign content to tasks of an existent Task Ontology

 Upload content on TALOS server

Organizing content is a CM‟s task that does not affect the state of a Task

Ontology and thus it is not included in Figure 22.

As far as the editing of an existing CM‟s project is concerned, the procedure is

similar to the one described in the previous about editing Task Ontologies locally.

In this case and due to the fact that CMs always need to download the Task

Ontology first in order to assign content to its tasks, checks must be done

not only for new versions of content, but also for new versions of Task

Ontologies.

 End User

The user of the iPhone can perform the following actions:

 Download an OTO

 Download additional content

 Access Web Services

The user is automatically notified for the existence of a new version of an OTO

by the time the latter is published on TALOS Server.

We point out that the end-users may not download all content assigned

to an OTO from the start, but decide to download only a part of it and

retrieve the remaining content gradually during the use of the

application.

Colors in Figure 22 are used to denote the distinct “paths” that are followed

when bringing a new Task Ontology in TALOS system. The sequence of the

required tasks is the following:

1. A TOA creates a new Task Ontology and uploads it on TALOS Server

2. A CM downloads the corresponding Task Ontology, assigns content to

it and uploads it on TALOS Server

3. The end-user is notified that an OTO exists on TALOS Server

4. The end-user downloads the OTO

Obviously, in all cases, precondition for connecting to TALOS server is the

successful authentication by the system.

As shown in Figure 23, in a normal use case scenario and after the first two of

the above steps are performed, a Task Ontology is considered to be operational

and amenable only to updates (white “paths” of TOAs and CMs in Figure 22).

Idle Task

Ontology (ITO)

Operational

Task Ontology

(OTO)

CM’s

Project

upload

download

(after ITO validation)

upload

edit

assign

(after ITO download)

download

download

TOA’s ITO

Project

create

upload

TOA’s OTO

Project

download

edit

validate

download

Task Author End-User

Content Manager

create

TALOS

Server
Sleep

Eat

Find

Chapter

ParagraphPOI

Figure 23: Task Ontology Lifecycle in TALOS

6 Task Ontology Authoring Tool

6.1 Introduction

This section describes the Task Ontology Authoring Tool. The Task Ontology

Authoring Tool (TOAT) is a specially designed software tool that support authors

in the design and manipulation of task models in an intuitive manner.

The remaining section is organized as follows. In Section 6.2 we present the

user requirements for TOAT. Section 6.3 discusses some issues regarding the

design decisions we made for TOAT development. Finally, Section 6.4 provides an

overview of TOAT functionality.

6.2 User requirements

The overall purpose of the Talos project is to design, develop and evaluate a

complete framework that will enable the task-aware provision of content to

mobile travellers. Prototype mobile travel guide applications, incorporating this

framework, will be developed. These applications will thus make use of task-

oriented functionalities and a task-based user interface.

The Task Ontology Authoring Tool (TOAT) is developed as a means to create

the task hierarchies/ontologies that will afterwards be used in the prototype

applications. These ontologies will namely define the structure of the user

interface for the mobile travel guide, and, possibly, the basic functionality. With

the TOAT, the task models for the prototype applications will thus be generated.

The TOAT is an authoring environment for SME‟s, enabling them to define

tasks for mobile users based on the established task model. The intended users

of the TOAT are thus, firstly, non-expert users, namely SME authors. They should

be able to design and manipulate task models in an intuitive manner. Task

ontologies have to be easily expandable and specialized with more tasks and

subtasks for various use cases and needs.

The TOAT interface is a Microsoft Visio-like tool, allowing users to create task

„bubbles‟ and connecting these with arrows.

We have collected the following set of user requirements:

 User-friendliness: TOAT should be an easy to use environment for task

authoring both for expert and non-expert users, like the SME task authors.

Therefore, it should provide an intuitive interface for those users, like a

graphical Visio-like tool. Section 4.3 provides a thorough discussion about

the graphical notation of the TODO language we use to model tasks in

TALOS project. We have experimented with several visualizations of TODO

for TOAT. In the following we give some examples:

Figure 24: Tree-like Interface

The tree-like prototype interface provides a very easily understood

presentation of task hierarchies. Further, we have implemented a task details

panel for adding textual details (task parameters) relevant for each task.

However, it can easily capture large hierarchies and especially those that are

represented as graphs and not as trees or DAGs.

Figure 25: Mindmap-like Interface

The mindmap-like prototype interface combines a very structured

presentation of task hierarchies with a text-based way of creating the

hierarchies. However, it can still have limitations in regards to the representation

of large task hierarchies or graph-based models.

Figure 26: Graph-based interface

The graph-based prototype interface provides a highly structured

presentation of task ontologies using a graph layout and drag-n-drop

functionalities. Further, we have added a panel for editing task properties (task

attributes and parameters). This is the interface option we have decided to use

for TOAT development.

 Minimum installation effort: TOAT will be used by SMEs authors that

are expected to be non-IT experts. Therefore, there is an additional

requirement for TOAT to need minimum (or no) installation effort. For

example, it should not require the existence of external libraries,

frameworks, etc. like Java Runtime Environment (JRE) or .NET SDK.

 Lightweight: TOAT should be as light-weight as possible in order to

enable editing of large task hierarchies with minimum memory impact.

 Collaboration capabilities: TOAT should enable importing and exporting

task models from/to TALOS server, versioning of models and user

authentication.

 Open-source: TOAT will be an intellectual property of SMEs, therefore it

should be using open-source technologies.

 Compatibility with standard technologies – Platform

independence: TOAT should operate in multiple platforms and operating

systems and use standard technologies.

6.3 TOAT Overview and Design Decisions

The requirements discussed above lead us to the decision of implementing

TOAT as a web-based and not as a desktop application. A web-based application

has the following advantages over a desktop one:

 It has a friendly interface in which non-expert users are used to (browser)

 It is platform independent

 It needs no installation as it operates through the browser

 It is lightweight as several heavy operations are performed at the server

Further, TOAT has been developed with the following issues in mind:

 It does not require any external library such as JRE, .NET SDK, flash etc.

 Only open-source frameworks have been used. Specifically, we have used

the following JavaScript libraries:

o jQuery [38] (MIT License)

o MooTools [39] (MIT License)

o MooCanvas [40] (MIT License)

o draw2d [41] (LGPL License)

 It complies with standard web technologies such as XML, DOM, JavaScript

and AJAX.

Further, TOAT exhibits the following features:

 A graph-based interactive 2D representation of the task hierarchy

 Compatibility with ToDo graphical notation

 Syntactic (on the ToDo XML Schema level) and semantic validation of task

models

 Mapping of graphical models to ToDo XML documents

 Import and export of task models from and into the TALOS server

 Versioning of task models

 User authentication

All graph editing functionalities, such as drag-n-drop, pan, zoom, and layout

are performed in client-side using JavaScript an AJAX. More heavyweight

functionalities are performed in the server-side using Java 1.6 and SQL. Backend

functionalities include user authentication, storing and retrieving of XML task

models and interaction with the TALOS server.

6.4 The TOAT UI

This section provides screenshots of the TOAT User Interface.

Figure 27: Drag a task from the Palette and drop it on the canvas

Figure 28: The TOAT Menu

Figure 29: Editing the name of a task

Figure 30: Adding a relation between two tasks

Figure 31: Changing the type of a relation

Figure 32: Highlight a task

Figure 33: Editing Task Properties

7 TALOS Server Database

7.1 Introduction

This section describes the Data Model of the TALOS Server Database. As

described in [42], the server database breaks into two parts: (a) a part where

Task Ontologies described in ToDo are stored; this is the so-called Task

Ontology Database (TODB), and (b) a part that stores all content-related

information; this is the so-called Content Base (CB). The CB includes (a)

unstructured content in the form of text, (b) geo-referenced (structured) content

as Points of Interest (POIs), and (c) context-related information that is used for

filtering the corresponding resources in CB according to a set of context

attributes. As we explain in the following, context-related information is essential

(a) for customizing the content a user may want to retrieve and store in

his/her local database [30], i.e. the database of the iPhone, and (b) for

supporting offline context-based recommendation of both POIs and

Tasks.

The remaining section is organised as follows. Section 7.2 provides the Entity-

Relationship (ER) diagram from which the Data Model is generated. Section 7.3

discusses the Data Model and illustrates the Relational Schema of the Server

Database. Section 7.4 addresses the details (data types, integrity constraints

etc.) of all relational tables introduced in Section 7.3.

7.2 Entity-Relationship Diagram

The Entity-Relationship diagram of the TALOS Server Database is depicted in

Figure 34. The meaning of the notations used can be found in [43]. The part

referring to TODB is captured by the blue frame. The rest of the database

corresponds to CB. Note that the context-related information stored in TALOS

server is included in CB.

7.2.1 TODB ER Diagram

The basic entity in TODB is the Task. Each task has the following set of

attributes:

 Model: Denotes the model to which the task belongs. This attribute is

the URI of the Task Ontology. By the time a task changes, the version

of the corresponding model changes too (derived property).

 Name: The name of the task, e.g. “Book a flight”.

 Version: Each task has a version which is automatically generated by

the time a Task Ontology Author (TOA) creates or updates a task

 Description: A piece of text that describes the task.

 Author: The name of the TOA. Each task may have more than one co-

authors.

 Publisher: The name of the publisher, e.g. IMIS/RC “Athena”.

 Created On: The date a task was created.

 Language: The language in which the task attributes are given, e.g.

German.

 Web Service: The URL of the web service that realizes the task. Each

task may be realized by more than one web services. We point out that

Web Services in TALOS are mainly used for realizing general

tasks, i.e. tasks that break down into simpler ones but can optionally

be accomplished by simply redirecting the user to the available Web

Service. The task “Book a Hotel Room” is a representative example of

this kind.

Each task in TODB is identified by its Name, Version and the Model it

belongs to. Thus, these three attributes serve as a Primary Key (PK) of the Task

entity.

Besides the above attributes, each task has an additional set of parameters.

The Parameter entity is defined as a weak entity because, from a conceptual

point of view, a parameter cannot exist in the absence of a task. Thus, each

parameter is identified by its Name along with the PK of the Task entity. Each

parameter can also have a Description for the task authors explaining its

meaning, purpose etc. The datatype of the value a parameter is instantiated with

is denoted by the XSD attribute. For the purposes of TALOS, a task parameter

can only have one of the following types that are captured by the Type attribute:

 Input

 Output

The relations of the TODB ER Diagram provided in Figure 34 are the following:

 SubTaskOf: It denotes a subsumption relationship between a parent-

task and its subtasks. A task may have one or more children. All tasks

in the task ontology have at least one parent task. The attribute

Parent Task denotes the super-task.

 Sequence: It denotes a time ordering between tasks. A task may

participate in more than one sequence relations. A sequence relation

may also denote a dataflow from the first task to the second one. Such

a dataflow is interpreted as a parameter passing. The parameter that is

passed from the first task is denoted by the attribute Source

Parameter, while the parameter of the second task that is instantiated

with the passed value is denoted by the Target Parameter attribute.

Note that a sequence between two tasks may introduce more than one

parameter passing. The attribute Source Task denotes which task is

first in order of execution.

 OR: A task that is accomplished by at least one of its children is related

with its subtasks through the OR relation.

 CHOICE: A task that is accomplished by exactly one of its children is

related with its subtasks through the CHOICE relation.

 GROUP: Tasks in a ToDo ontology may form a group. This group is

regarded as an anonymous task that is related with the corresponding

tasks through the GROUP relation. Note that tasks into a group may be

related one another with one of the SubTaskOf, OR, CHOICE, and

Sequence relations.

 Has Parameter: It denotes the (weak) relationship between a task

and its parameters.

 Recommended For: Each task is connected with a piece of context-

related information. This information can be downloaded and

stored in the user‟s database in order to serve as a filter for an

offline context-based task recommendation service.

Task

L a n g u a g e

D e s c r i p t i o n

N a m e

W e b S e r v i c e

C r e a t e d O n

P u b l i s h e r

Has Paramete r Paramete r

D e s c r i p t i o n

N a m e

X S D

T y p e

Ass igned To

A u t h o r

Conten t

Re la tes To

POI

Sequence

S o u r c e T a s k
SubTaskOf OR CHOICE GROUP

0..1

0..*

1..*

1..1
0..1

2..*0..1

2..*

0..1

2..*

V e r s i o n

C o n t e n t I D

N a m eT y p e

L o n g i t u d e

L a t i t u d eN e i g h b o r h o o d

A d d r e s s

ISA

V e r s i o n M o d e l

Accomodat ionEat and Dr inkEnte r ta inmentAc t i v i t i es

W e b S i t e T e l e p h o n e

C a t e g o r y

O p e n i n g H o u r s
T i c k e t P r i c e

P r i c e

Shopp ing Serv ices

T y p e o f P r o d u c t s N u m b e r o f R o o m s

F e a t u r e s

S t y l e

R a t i n g

R e v i e w

Rev iew

A u t h o r

Ci ty

N a m e

C i t y I D

Loca ted In

Refe rs To

D o u b l e R o o m P r i c eA v a i l a b l e H o u r s

Contex t

Recommended For

C o n t e x t I D

S e a s o n

W e a t h e r T y p e

T i m e O f D a y

Has Rev iew

T r a v e l l e r P r o f i l e s

TODB

O p e n i n g H o u r s

S o u r c e P a r a m e t e r T a r g e t P a r a m e t e r Recommended For

P a r e n t T a s k

Recommended For

Y a h o o W e a t h e r I D

D a t e

G e o n a m e s I n f o

D a y

Ass igned To

C i t y

B i n d i n g

R e q u i r e d

Figure 34: ER Diagram of the TALOS Server Database

 Assigned To: This relation connects a task in TODB with a piece of

content stored in CB. It is used to capture the Content-to-Task

annotation made by the Content Managers through the Task

Annotation Tool. We emphasize that in case there are POIs in CB with

no related content, these POIs can be associated directly with a specific

task through the Assigned To relation.

7.2.2 CB ER Diagram

In CB there are three basic entities: Content, POI and City. The entity

Content captures the unstructured content in the form of text (paragraphs,

sections), images, etc. Each piece of content has the following attribute:

 Content ID: This is a unique ID used to identify the different pieces of

content. By using this ID, the TALOS server is able to identify the type,

version and path (URL, file, database) where the actual content is

stored.

Content is related to Context through the Recommended For relation. This is

very useful for customizing the content retrieved from the TALOS server

according to the user‟s profile and date of his/her trip. Taking into account

that POIs are also related to context (and content), one can easily argue that an

additional relation between content and context is useless. However, there are

two important factors that impose such a Content-to-Context relationship. The

first one is for distinguishing content that relates to the same POIs but addresses

different types of readers (e.g. young people, elders etc.). The second and

most important reason is that a specific piece of content may refer to a city

event that is not classified under a POI subtype. Therefore, similarly to the case

of POI filtering, a user should also be able to download only the events that take

place during the small period of his/her trip.

The POI entity captures all geo-referenced content. Each POI has the

following set of attributes:

 Name: The name of the POI.

 Type: The type of the POI.

 Address: The physical address of the POI.

 Longitude: The longitude of the POI.

 Latitude: The latitude of the POI.

 Neighbourhood: The name of a neighbourhood a POI belongs to. It is

used in case the neighbourhood is well-known, e.g. Thessio in Athens.

 Web Site: The URL of the web site of the POI.

 Telephone: The telephone number of the POI.

 Features: The specific features of the POI. Each POI may have more

than one features, e.g. a hotel may have both pool and mini bar as

features.

Each POI may also have a review. The Review entity is defined to be weak

as it must always refer to a specific POI. The Date attribute is the date a review

was submitted, Author is the name of the review‟s author, the Rating attribute

is the POI rate given by the review, and the Review attribute is the actual text.

Besides the previous attributes, each distinct POI subtype has also a set of

additional properties. Due to lack of space Figure 20 depicts only some of the

representative properties of the corresponding POI subtypes. POI subtypes are

used (a) in case a user may want to download only specific kind of POIs

from the TALOS Server and (b) for optimizing the queries related to

POIs by grouping POIs of the same category into distinct entity sets and

thus into different relational tables (see Section 7.3). The provided POI

subtypes are the following:

 Accommodation: Hotels, Motels, Rooms to Let, etc.

 Eat and Drink: Restaurants, Bars, Pubs, etc.

 Entertainment: Museums, Theatres, Cinemas, etc.

 Activities: Hitchhiking, Boat Excursions, etc.

 Services: Police Stations, Banks, Hospitals, Rent a Car etc.

 Shopping: Shopping Malls, Shopping Areas, Public Markets etc.

As the provided content in TALOS system refers to specific cities (e.g. Berlin,

Brussels, etc.), a City is regarded as a distinct entity in our ER model. Each city

is identified by a unique City ID (PK) and it has also a (unique) Yahoo Weather

ID, a Name and a set of attributes taken from Geonames Database7

(Geonames Info). Each POI is located in one and only one city. This

relationship is captured by the (N:1) Located In relation of Figure 20.

Content in CB may relate to a specific POI (Relates To) or to a

specific City (Refers To). For instance, general information about the history of

a city is directly assigned to this city and not to a POI. Note that POIs are also

7 http://www.geonames.org/

http://www.geonames.org/

associated with a piece of context captured by the Context entity

(Recommended For). This information is used (a) for filtering the POIs

according to a specified user profile (when downloading content from the server)

and (b) for recommending POIs or Tasks to the users based on context-

related information such as Weather, Day, Time Of Day and Season of their

trip. The latter is achieved by downloading the corresponding part of context into

the user‟s local database and combining it with the dynamic context retrieved by

the Context Aggregator.

7.3 Data Model Overview

As mentioned in the previous, the three major entities that play a central role

in the TALOS project are: Tasks, Context and Content (both structured and

unstructured).

Tasks provide a means to organize the activities or goals of the TALOS users.

In the travel guide use case scenario, tasks could be “Find nice places to eat or

drink”, “Get information about museums and exhibitions” or “Move to a hotel”.

More detailed information regarding the structure and use of tasks in the TALOS

project can be found in Section 4.

Available content can be either static such as text, photos or maps provided

by a travel guide or dynamic such as transportation schedules, ticket prices,

events and museum exhibitions retrieved from the web. Content can be also

well-structured in the form of POIs (such as hotels, restaurants, bars, metro

stations etc.) each one having a set of properties (price, opening hours, music

style etc.).

Finally, context is used for modelling a set of contextual attributes related to a

user‟s situation. Its purpose is to qualify tasks, content and POIs with specific

context conditions.

As shown in the ER Diagram of Section 7.3.3, the aforementioned entities are

related one another. Therefore, the suggested data model provides tables for

Task-to-Content, Task-to-Context, POI-to-Context, and Content-to-Context

relations. Figure 35 illustrates the Relational Schema of the TALOS Server

Database. The detailed description of each table follows in Section 7.4.

Figure 35: The Relational Schema of the TALOS Server Database

7.4 Description of Tables

In this section we provide detailed information about the properties of each table

shown in Figure 21.

7.4.1 Table Task

Column Name Column Type Description

Task_ID auto-generated ID PK

Version_ID varchar PK

Model varchar URI of the Task Ontology

Name varchar

Description varchar

Language char(20)

Author varchar Name of the authors separated with comma (;)

Publisher varchar

Created_On datetime

Web_Service URL URLs separated with comma (;)

is_Group bool
Specifies if the task is atomic or an anonymous group of

tasks

Note that although the three attributes (Model, Name and Version_ID) can

identify all together a task in the Task table (they are unique), we decided to

create an auto-generated ID (Task_ID) in order to facilitate joins including the

Task table. This ID actually encodes the first two attributes (Model and Name).

As far as the versioning problem is concerned, we can follow two different

approaches. Due to the fact that we cannot overwrite the changes in the

database, both approaches use replication and not overwriting. The naïve one is

to (a) replicate the whole Task Ontology, i.e. all tasks belonging to the

corresponding model, while the other is (b) to replicate only the specific part

of the ontology that was infected by the updates and use the remaining

part as is. We explain the advantages and disadvantages of each approach in

the following:

1. Replicating the whole model

Each time a TOA updates at least one Task, a new Task Ontology is

inserted into TODB. Each task in this model has the same ID as the

corresponding task in the previous model, but a different (higher) version

number. Note that this new version number is the same for all

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 88 of 129

tasks in the model and thus it represents the version of the whole

model. The task-to-content and task-to-context assignments are not

propagated to the new Task Ontology and thus it is considered to be an

idle ontology (ITO). This means that in order for a user to be able to

download this new version, a Content Manager must make all assignments

from scratch and publish the ontology as operational (see Section 6 for

details about the TALOS Ontology Lifecycle).

2. Replicating part of the model updated

In this case, each time one or more tuples in tables Task or Parameter

are updated, one or more tasks are inserted into TODB (depending on the

update). These new tasks correspond to new versions of the existing ones.

The tuples that express a relation between the updated tasks are

replicated with the new version numbers of the participating tasks. In this

case, the version of the model is the higher version among all tasks

belonging to this model and it is not the same for all tasks. All assignments

are propagated and thus the new version is considered to be an OTO.

Note that this approach is applicable only in case a task is slightly

updated, i.e. a parameter is added or an attribute changes, and not

in case tasks are deleted or inserted in TODB. In the latter case, the

evolution of the ontology is quite difficult to handle and thus we have

decided to follow the first approach where the whole model is replicated.

7.4.2 Table Model

Column Name Column Type Description

Model varchar PK (FK to Task->Task_ID)

Version_ID varchar PK (FK to Task->Version_ID)

Graph_XML text
Contains an XML representation of the model

graph generated by TOAT

7.4.3 Table Task_Subsumption

Column Name Column Type Description

Task_ID1 int PK (FK to Task->Task_ID)

Version_ID1 varchar PK (FK to Task->Version_ID)

Task_ID2 varchar PK (FK to Task->Task_ID)

Version_ID2 varchar PK (FK to Task->Version_ID)

Type smallint

One of: 1 (Sub), 2 (OR), 3 (CHOICE), 4 (SubSeq)

SubSeq denotes that the child-task participates in a

sequence chain

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 89 of 129

The reason we decided to follow this flat representation of the Task

Hierarchy is because the tasks are unravelled gradually as the user interacts

with the interface of the mobile device (see [44]) and thus, at each step, only

the direct subtasks of the current task are needed. In other words, there is

no need to reconstruct the whole hierarchy by recursively traversing the task-

nodes. The only case we may need to recursively traverse a path in the Task

Hierarchy is when we have a GROUP construct as subtask. However, we argue

that, in our travel guide use case scenario, sequentially nested GROUPs are

unlikely to exist and thus we only need to repeat the traversal once more (for the

GROUP encountered). In any case, the repeated traversal of the hierarchy can be

done (as many times as needed) using the is_Group attribute of the retrieved

task.

7.4.4 Table Task_Sequence

Column Name Column Type Description

Seq_ID int PK (FK to Task->Task_ID)

Source_Task_ID int PK (FK to Task->Task_ID)

Source_Version_ID varchar PK (FK to Task->Version_ID)

Target_Task_ID varchar PK (FK to Task->Task_ID)

Target_Version_ID varchar PK (FK to Task->Version_ID)

Source_Parameter varchar PK (FK to Parameter->Name)

Target_Parameter varchar PK (FK to Parameter->Name)

Each distinct sequence chain is captured by an auto-generated anonymous

group task. The ID of this task is denoted by Seq_ID. Note that a sequence

between two tasks may introduce more than one parameters passing and thus

Source_Parameter and Target_Parameter are also included in the PK of the

table.

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 90 of 129

7.4.5 Table Parameter

Column Name Column Type Description

Task_ID int PK (FK to Task->Task_ID)

Version_ID varchar PK (FK to Task->Version_ID)

Name varchar PK (The name of the parameter)

Description text A description of the parameter for the authors

Type smallint
One of the six types introduced in Section 1 encoded

from 1 to 6

XSD_ID int FK to XSD->XSD_ID

Required bool Indicates if a parameter is required or not

7.4.6 Table Parameter_Binding

Column Name Column Type Description

Task_ID int PK (FK to Task->Task_ID)

Version_ID varchar PK (FK to Task->Version_ID)

Name varchar PK (The name of the parameter)

Binding smallint One of: 1 (Context), 2 (User), 3 (Database)

7.4.7 Table XSD

Column Name Column Type Description

XSD_ID auto-generated ID PK

XSD text The XML datatype

7.4.8 Table Content

Column Name Column Type Description

Content_ID auto-generated ID PK

Content text The actual content

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 91 of 129

7.4.9 Table POI

Column Name Column Type Description

POI_ID auto-generated ID PK

Name varchar The name of the POI

City_ID int FK to City->City_ID

Longitude double precision

Latitude double precision

Address varchar

Neighbourhood varchar The name of the neighbourhood the POI belongs to

POIs are located to a city (or more explicitly to a neighbourhood of a city)

represented by the City_ID and Neighbourhood attributes respectively. The

City_ID attribute acts as a foreign key to the City table, which enables the

application to get more information available about the city. If a POI

represents an area instead of a point in the map, (like for example

parks) we use the POI center as coordinates.

POIs are categorized into different types; we have identified 6 general type

categories for POIs, i.e. Accommodation, Eat and Drink, Shopping,

Services, Activities and Entertainment. POIs of different types have different

additional attributes, for example a hotel has a number of rooms, whereas a

museum has opening hours and ticket prices. We have made a design

decision not to include any location-irrelevant attributes inside the POI

table (except Name), because this table is used in queries just for

retrieving IDs of POIs that match a specified location (and maybe Type)

parameter. In addition, although our design decision regarding the relational

schema may contradict at first sight with the ISA relationship of the ER model

provided in Section 1, we emphasize that POI attributes such as Features are

not common in all POI subtypes. It just seems to be this case because our

prototype implementation does not follow a Normal Form (see [43]) due

to lack of space. Therefore, in this document, the data model provides different

tables for POI types which contain both common and non common attributes.

The Type attribute of a POI (e.g. restaurant, bar, hotel, metro station etc.) is

stored in a separate table named POI_Type (see Section 7.4.24). Depending on

the Type attribute, the TALOS server is responsible for extracting all available

information about a POI by joining the POI table with the corresponding relational

table of its type. For example, types “restaurant” and “bar” correspond to

Eat_And_Drink, “hotel” corresponds to Accommodation, “metro station”

correspond to Services table etc. In order to facilitate the integration with Qype

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 92 of 129

API1, we propose that the different types of POIs should be identical to the Qype

category_id values. In this way, we can also utilize Qype‟s detailed and

sophisticated POI type hierarchy and POI database.

7.4.10 Table Accommodation

Column Name Column Type Description

POI_ID int PK (FK to POI->POI_ID)

Number_Of_Rooms int

Double-

Bed_Room_Price
double precision

Category varchar Stars for hotels, ranks for rooms to let

Telephone varchar Tel numbers separated with comma (;)

Web_Site URL

Features varchar Key features separated with comma (;)

Regarding the features of each subtype, the Relational Schema of our

prototype implementation does not follow a Normal Form (see [43]). In

other words, queries over distinct POI features cannot be always formulated

using standard SQL. This also holds for all other POI tables. However, in case

the database administrator knows exactly which features belong to

which POIs, then it is easy to define the corresponding features as

separate fields in each table and manipulate them directly with standard

SQL features.

7.4.11 Table Eat_and_Drink

Column Name Column Type Description

POI_ID int PK (FK to POI->POI_ID)

Features varchar Key features separated with comma (;)

Opening_Hours varchar

Telephone varchar Tel numbers separated with comma (;)

Web_Site URL

Style varchar
Style features (jazz music, chinese food

etc.) separated with comma (;)

1 http://www.qype.co.uk/developers/api

http://www.qype.co.uk/developers/api

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 93 of 129

7.4.12 Table Shopping

Column Name Column Type Description

POI_ID int PK (FK to POI->POI_ID)

Type_Of_Products varchar

Features varchar
Key features (eg. brands)

separated with comma (;)

Opening_Hours varchar

Telephone varchar

Web_Site URL

7.4.13 Table Services

Column Name Column Type Description

POI_ID int PK (FK to POI->POI_ID)

Available_Hours varchar

Features varchar Key features separated with comma (;)

Telephone varchar

Web_Site URL

7.4.14 Table Activities

Column Name Column Type Description

POI_ID int PK (FK to POI->POI_ID)

Price double precision

Features varchar Key features separated with comma (;)

Telephone varchar

Web_Site URL

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 94 of 129

7.4.15 Table Entertainment

Column Name Column Type Description

POI_ID int PK (FK to POI->POI_ID)

Ticket_Price double precision

Features varchar Key features separated with comma (;)

Telephone varchar

Web_Site URL

7.4.16 Table Review

Column Name Column Type Description

POI_ID int PK (FK to POI->POI_ID)

Author varchar PK

Review text

Rating smallint From 1 to 5

Date date The date of the review

7.4.17 Table Content_POI

Column Name Column Type Description

Content_ID int PK (FK to Content->Content_ID)

POI_ID int PK (FK to POI->POI_ID)

This table associates pieces of content (paragraphs, sections, photos, map tiles

etc.) with a POI.

7.4.18 Table Content_City

Column Name Column Type Description

Content_ID int PK (FK to Content->Content_ID)

City_ID int PK (FK to City->City_ID)

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 95 of 129

This table associates pieces of content (paragraphs, sections, photos, map tiles

etc.) to specific cities. It is used for assigning general content (that is not related

to a specific POI) with a city.

7.4.19 Table City

Column Name Column Type Description

City_ID auto-generated ID PK

Name varchar

Yahoo_Weather_I

D
char(10)

The unique ID given to a city by Yahoo weather web

service

Geonames_ID int FK to Place->Geonames_ID

Users of the mobile travel guide are expected to search for content and

services related with a city. Further, many web services, like Yahoo! Weather,

Geonames web services etc., take city as parameter. Therefore, we have

included a City table in the database schema. Each city, apart from its Name and

auto-generated City_ID, has a Yahoo_Weather_ID used for accessing Yahoo

Weather services and a Geonames_ID (the ID of the city in the Geonames

database).

7.4.20 Table Geonames

Column Name Column Type Description

Geonames_ID int PK

Place_Type varchar

Name varchar

This table represents a place entity in the Geonames database. Geonames

services provide additional information about a city, such as its timezone, place

hierarchy, currency etc.

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 96 of 129

7.4.21 Table Context

Column Name Column Type Description

Context_ID auto-generated ID PK

City_ID int FK to City->City_ID

Weather varchar

Season varchar

Day varchar

Time_Of_Day varchar

Traveller_Profile varchar

Context is used for modelling a set of contextual attributes related to a user‟s

situation. The purpose of context is to be used as a means to recommend

personalized and thus more relevant content or tasks to the user. In the

mobile guide prototype, the contextual attributes include date and time

(Time_Of_Day, Day and Season), weather conditions (Weather), and general

user preferences which are grouped into predefined traveller types (Traveller

Profile). A specific context instance groups these contextual attributes

as key-value pairs, so that they can be stored and linked with the other

entities (Tasks, Content, POIs). We emphasize that we do not intend to

store dynamic context (e.g. changing weather conditions, user‟s current

location etc.) in the TALOS server database. Instead, we provide a means

for task and content authors to declare that a specific activity (e.g. a boat trip) or

a POI (e.g. an open-air market) are highly suggested or available only under

specific context conditions (e.g. hot or calm weather). Therefore, we suggest that

the values of contextual attributes should be taken from a predefined set. For

example, Yahoo! Weather provides a set of 47 different codes for weather

conditions; instead we propose to use only five: {Hot, Rainy, Cold, Calm, ALL}

which we think are adequate for the purposes of the TALOS prototype. For the

other contextual attributes we suggest the following possible values:

 Season: Winter, Summer, ALL

 Day: Monday-Friday, Weekend , ALL

 Time of Day: Morning, Afternoon, Night, ALL

 Traveller Type: Backpack Traveller, Business Traveller, Traveller with

Family, Disabled Traveller, ALL

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 97 of 129

7.4.22 Table Task_Content

Column Name Column Type Description

Task_ID int PK (FK to Task->Task_ID)

Version_ID int PK (FK to Task->Version_ID)

Content_ID int PK (FK to Content->Content_ID)

This table stores the correspondence between pieces of content in CB and

tasks in TODB. As already mentioned, the assignment of content to tasks is

performed manually by the Content Manager through the Task Annotation Tool.

7.4.23 Table Task_POI

Column Name Column Type Description

Task_ID int PK (FK to Task->Task_ID)

Version_ID int PK (FK to Task->Version_ID)

POI_ID int PK (FK to Content->POI_ID)

This table stores the correspondence between POIs in CB and tasks in TODB.

It is used for assigning tasks to POIs of CB that do not have related

(unstructured) content.

7.4.24 Table POI_Type

Column Name Column Type Description

Type varchar PK (restaurant, pub etc.)

POI_ID int PK (FK to POI->POI_ID)

7.4.25 Table POI_Context

Column Name Column Type Description

POI_ID int PK (FK to POI->POI_ID)

Context_ID int PK (FK to Context->Context_ID)

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 98 of 129

This table associates POIs to specific context. From the application perspective,

this relation is used for filtering the provided POIs according to the user‟s

preferences and context.

7.4.26 Table Content_Context

Column Name Column Type Description

Content_ID int PK (FK to Content->Content_ID)

Context_ID int PK (FK to Context->Context_ID)

This table is used for assigning pieces of content to specific context parameters.

Its purpose is similar to that of the previous table.

7.4.27 Table Task_Context

Column Name Column Type Description

Task_ID int PK (FK to Task->Task_ID)

Context_ID int PK (FK to Context->Context_ID)

Version_ID int PK (FK to Task->Version_ID)

This table associates tasks with specific context parameters. It is used for

filtering and/or recommending tasks according to the user‟s preferences and

context.

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 99 of 129

8 References

[1] TALOS: Task Aware Location Based Services for Mobile

Environments, Project Proposal (at TALOS wiki).

[2]

[3]

Naganuma, T. and Kurakake, S., Task Knowledge Based

Retrieval for Service Relevant to Mobile User‟s Activity.

International Semantic Web Conference (ISWC), 2005.

Mizoguchi, R., Van Welkenhuysen, J. and Ikeda, M., Task

Ontology for Reuse of Problem Solving, Towards very large

Knowledge Bases, 1995.

[4]

[5]

[6]

Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R.,

Shadbolt, N., Van de Velde, W. and Wielinga, B., Knowledge

Engineering and Management - The Common-KADS

Methodology, MIT Press, 2000.

Von Hunolstein, S. and Zipf, A., Towards Task Oriented

Map-based Mobile Guides. In Proceedings of the

International Workshop “HCI in Mobile Guides”, 2003.

Van Welie, M., Task-Based User Interface Design, PhD

Thesis, Vrije Universiteit Amsterdam, 2001.

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Berners-Lee, T., Hendler, J. and Lassila, O., The Semantic

Web, Scientific American, May 2001.

http://protege.cim3.net/file/pub/ontologies/generations/gen

erations.owl

http://protege.cim3.net/file/pub/ontologies/wine/wine.owl

Protégé Ontology Editor, http://protege.stanford.edu/

Web Protégé,

http://protegewiki.stanford.edu/index.php/WebProtege

OWLSight Ontology Browser,

http://pellet.owldl.com/ontology-browser

Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D. and

Patel-Schneider, P.F., The Description Logics Handbook,

Cambridge University Press, 2002.

[14]

[15]

Baader, F. and Sattler, U., An Overview of Tableau

Algorithms for Description Logics. In Tableux, 2000.

Pellet: An open-source OWL-DL Reasoner,

http://clarkparsia.com/pellet/

[16] HermiT OWL Reasoner, http://www.hermit-reasoner.com/

Naganuma, T. Luther, M., Wagner, M., Tomioka, A., Fujii,

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 100 of 129

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

K., Fukazawa, Y. and Kurakake, S., Task-Oriented Mobile

Service Recommendation Enhanced by a Situational

Reasoning Engine. In Proceedings of the Asian Semantic

Web Conference, 2006.

Resource Description Framework (RDF),

http://www.w3.org/RDF/

Web Ontology Language (OWL),

http://www.w3.org/TR/owl-features

World Wide Web Consortium (W3C), http://www.w3.org/

Suggested Upper Merged Ontology (SUMO),

http://www.ontologyportal.org/

Dublin Core Metadata Initiative, http://dublincore.org/

Unified Modeling Language,

http://www.omg.org/technology/documents/formal/uml.ht

m

Business Process Modeling Notation, http://www.bpmn.org/

OWL-S, Semantic Markup for Web Services,

http://www.w3.org/Submission/OWL-S/

Sasajima, M., Kitamura, Y., Naganuma, T., Kurakake, S.

and Mizoguchi, R., Task Ontology-Based Framework for

Modeling Users‟ Activities for Mobile Service Navigation

(poster). In Proceeding of the European Semantic Web

Conference (ESWC), 2006.

Model-View-Controller Architecture,

http://en.wikipedia.org/wiki/Model-view-controller

Arvanitis, A., Athanasiou S. and Liagouris, J., A survey on

Context Models, 2009 (at TALOS wiki).

Georgantas, P., D1.1 - Context Aggregation, 2010 (at

TALOS wiki)

Tsigka, E., Pfennigschmidt, S., Arvanitis, A. and Liagouris,

J., D4.1 – Client-side Task Model, 2010 (at TALOS wiki)

Haarslev, V. and Möller, R., Expressive ABox Reasoning with

Number Restrictions, Role Hierarchies, and Transitively

Closed Roles. In Proceedings of the International

Conference on Principles of Knowledge Representation and

Reasoning, 2000.

Berardi, D., Calvanese, C. and De Giacomo, G., Reasoning

on UML Class Diagrams using Description Logic Based

Systems. In Proceedings of the Workshop on Applications of

Description Logics, 2001.

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 101 of 129

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Straeten, R., Mens, T., Simmonds, J. and Jonckers, V.,

Using Description Logic to Maintain Consistency between

UML Models. In Unified Modeling Language, 2003.

Time Ontology in OWL, http://www.w3.org/TR/2006/WD-

owl-time-20060927

SPARQL Query Language for RDF,

http://www.w3.org/TR/rdf-sparql-query

Weiss, C., Bernstein, B., and Boccuzzo, B., i-MoCo: Mobile

Conference Guide - Storing and querying huge amounts of

Semantic Web data on the iPhone/iPod Touch. In Billion

Triples Challenge, International Semantic Web Conference

(ISWC), 2008.

Weiss, C., Karras, P. and Bernstein, A., Hexastore Sextuple

Indexing for Semantic Web Data Management. In

Proceedings of Very Large Data Bases Conference (VLDB),

2008.

http://jquery.com/

http://mootools.net/

http://skyweb.hu/x/moocanvas/

http://www.draw2d.org/draw2d/

Arvanitis, A., Liagouris, J. and Efentakis, A., TALOS Server-

side Data Model (at TALOS wiki).

Silberschatz, A., Korth F., H. and Sudarshan, S., Database

System Concepts, The MacGraw-Hill Companies Inc., 2002

Tsigka, E., Pfennigschmidt, S., Arvanitis, A., Liagouris, J.,

Eyckerman, P. and Dehner, H., D4.1 – Task Computing

Framework, 2010 (at TALOS wiki)

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 102 of 129

APPENDIX I - ToDo XML Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns="http://www.talos.cti.gr/ToDo"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.talos.cti.gr/ToDo"

 elementFormDefault="qualified">

 <xs:simpleType name="relationshipType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="SUB"/>

 <xs:enumeration value="OR"/>

 <xs:enumeration value="CHOICE"/>

 <xs:enumeration value="SUBSEQ"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="bindingType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="CA"/>

 <xs:enumeration value="USER"/>

 <xs:enumeration value="APP"/>

 </xs:restriction>

 </xs:simpleType>

 <!-- Input/Output parameter -->

 <xs:simpleType name="pType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="dateTime"/>

 <xs:enumeration value="city"/>

 <xs:enumeration value="POI"/>

 <xs:enumeration value="location"/>

 <xs:enumeration value="weather"/>

 <xs:enumeration value="list"/>

 </xs:restriction>

 </xs:simpleType>

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 103 of 129

 <!-- InstantiationType -->

 <xs:complexType name="instantiationType">

 <xs:sequence>

 <xs:element name="binding" type="bindingType"

minOccurs="1" maxOccurs="1"/>

 <xs:element name="var" type="xs:string"

minOccurs="1" maxOccurs="1"/>

 </xs:sequence>

 </xs:complexType>

 <!-- Parameter -->

 <xs:complexType name="paramType">

 <xs:sequence>

 <xs:element name="name" type="xs:string"

minOccurs="1"/>

 <xs:element name="type" type="pType"

minOccurs="1"/>

 <xs:element name="description"

type="xs:string"/>

 <xs:element name="instantiatedBy"

type="instantiationType" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="optional" type="xs:boolean"

use="required"/>

 </xs:complexType>

 <!-- Task Input/Output -->

 <xs:complexType name="ioType">

 <xs:sequence>

 <xs:element name="param" type="paramType"

minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <!-- Preinformation -->

 <xs:complexType name="preInformationType">

 <xs:sequence>

 <xs:element name="input" type="ioType"

minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 104 of 129

 <!-- Postinformation -->

 <xs:complexType name="postInformationType">

 <xs:sequence>

 <xs:element name="output" type="ioType"

minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 <!-- Sequence -->

 <xs:complexType name="dataflowType">

 <xs:sequence>

 <xs:element name="sourceParam" type="xs:string"

minOccurs="1" maxOccurs="1"/>

 <xs:element name="targetParam" type="xs:string"

minOccurs="1" maxOccurs="1"/>

 </xs:sequence>

 </xs:complexType>

 <!-- SubTask -->

 <xs:complexType name="subTaskType">

 <xs:sequence>

 <xs:element name="member"

type="xs:positiveInteger" minOccurs="1" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="ID" type="xs:positiveInteger"

use="required"/>

 </xs:complexType>

 <!-- OR -->

 <xs:complexType name="orType">

 <xs:sequence>

 <xs:element name="member"

type="xs:positiveInteger" minOccurs="2" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="ID" type="xs:positiveInteger"

use="required"/>

 </xs:complexType>

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 105 of 129

 <!-- Choice -->

 <xs:complexType name="choiceType">

 <xs:sequence>

 <xs:element name="member"

type="xs:positiveInteger" minOccurs="2" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="ID" type="xs:positiveInteger"

use="required"/>

 </xs:complexType>

 <!-- Group -->

 <xs:complexType name="groupType">

 <xs:sequence>

 <xs:element name="member"

type="xs:positiveInteger" minOccurs="2" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="ID" type="xs:positiveInteger"

use="required"/>

 <xs:attribute name="type" type="relationshipType"

use="required"/>

 </xs:complexType>

 <!-- Sequence -->

 <xs:complexType name="sequenceType">

 <xs:sequence>

 <xs:element name="member"

type="xs:positiveInteger" minOccurs="2" maxOccurs="2"/>

 <xs:element name="dataflow" type="dataflowType"

minOccurs="1" maxOccurs="1"/>

 </xs:sequence>

 </xs:complexType>

 <!-- Chain -->

 <xs:complexType name="chainType">

 <xs:sequence>

 <xs:element name="sequence" type="sequenceType"

minOccurs="1" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="ID" type="xs:positiveInteger"

use="required"/>

 </xs:complexType>

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 106 of 129

 <!-- Task -->

 <xs:complexType name="taskType">

 <xs:sequence>

 <xs:element name="taskID"

type="xs:positiveInteger"/>

 <xs:element name="versionID"

type="xs:positiveInteger"/>

 <xs:element name="model" type="xs:string"/>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="description"

type="xs:string" minOccurs="0"/>

 <xs:element name="language"

type="xs:language"/>

 <xs:element name="author" type="xs:string"

maxOccurs="unbounded"/>

 <xs:element name="publisher"

type="xs:string"/>

 <xs:element name="createdOn"

type="xs:date"/>

 <xs:element name="realizedBy"

type="xs:anyURI" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="isGroup"

type="xs:boolean"/>

 <xs:element name="preInformation"

type="preInformationType" minOccurs="0"/>

 <xs:element name="postInformation"

type="postInformationType" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="model">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="task" type="taskType"

minOccurs="1" maxOccurs="unbounded"/>

 <xs:element name="group"

type="groupType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="subTaskOf"

type="subTaskType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="chain"

type="chainType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="or" type="orType"

minOccurs="0" maxOccurs="unbounded"/>

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 107 of 129

 <xs:element name="choice"

type="choiceType" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

APPENDIX II – Example in XML

<?xml version="1.0"?>

<model xmlns="http://www.talos.cti.gr/ToDo"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:todo="http://www.talos.cti.gr/ToDo"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.talos.cti.gr/ToDo TODOXMLSchema.xsd">

 <todo:task>

 <todo:taskID>1</todo:taskID>

 <todo:versionID>1</todo:versionID>

 <todo:model>Travel Guide</todo:model>

 <todo:name>Task</todo:name>

 <todo:description></todo:description>

 <todo:language>En</todo:language>

 <todo:author>John Liagouris</todo:author>

 <todo:publisher>IMIS</todo:publisher>

 <todo:createdOn>2009-07-17</todo:createdOn>

 <todo:realizedBy>http://www.talos.cti.gr</todo:realizedBy>

 <todo:isGroup>false</todo:isGroup>

 </todo:task>

 <todo:task>

 <todo:taskID>2</todo:taskID>

 <todo:versionID>1</todo:versionID>

 <todo:model>Travel Guide</todo:model>

 <todo:name>Get a City Overview</todo:name>

 <todo:description></todo:description>

 <todo:language>En</todo:language>

 <todo:author>John Liagouris</todo:author>

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 108 of 129

 <todo:publisher>IMIS</todo:publisher>

 <todo:createdOn>2009-07-17</todo:createdOn>

 <todo:realizedBy>http://www.talos.cti.gr</todo:realizedBy>

 <todo:isGroup>false</todo:isGroup>

 <todo:preInformation>

 <todo:input>

 <todo:param optional="false">

 <todo:name>City</todo:name>

 <todo:type>city</todo:type>

 <todo:description></todo:description>

 <todo:instantiatedBy>

 <todo:binding>USER</todo:binding>

 <todo:var>city</todo:var>

 </todo:instantiatedBy>

 </todo:param>

 </todo:input>

 </todo:preInformation>

 </todo:task>

 <todo:task>

 <todo:taskID>3</todo:taskID>

 <todo:versionID>1</todo:versionID>

 <todo:model>Travel Guide</todo:model>

 <todo:name>Travel to/in the City</todo:name>

 <todo:description></todo:description>

 <todo:language>En</todo:language>

 <todo:author>John Liagouris</todo:author>

 <todo:publisher>IMIS</todo:publisher>

 <todo:createdOn>2009-07-17</todo:createdOn>

 <todo:realizedBy>http://www.talos.cti.gr</todo:realizedBy>

 <todo:isGroup>false</todo:isGroup>

 <todo:preInformation>

 <todo:input>

 <todo:param optional="false">

 <todo:name>City</todo:name>

 <todo:type>city</todo:type>

 <todo:description></todo:description>

 <todo:instantiatedBy>

 <todo:binding>USER</todo:binding>

 <todo:var>city</todo:var>

 </todo:instantiatedBy>

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 109 of 129

 </todo:param>

 </todo:input>

 </todo:preInformation>

 </todo:task>

 <todo:task>

 <todo:taskID>4</todo:taskID>

 <todo:versionID>1</todo:versionID>

 <todo:model>Travel Guide</todo:model>

 <todo:name>Sleep</todo:name>

 <todo:description></todo:description>

 <todo:language>En</todo:language>

 <todo:author>John Liagouris</todo:author>

 <todo:publisher>IMIS</todo:publisher>

 <todo:createdOn>2009-07-17</todo:createdOn>

 <todo:realizedBy>http://www.talos.cti.gr</todo:realizedBy>

 <todo:isGroup>false</todo:isGroup>

 <todo:preInformation>

 <todo:input>

 <todo:param optional="false">

 <todo:name>City</todo:name>

 <todo:type>city</todo:type>

 <todo:description></todo:description>

 <todo:instantiatedBy>

 <todo:binding>USER</todo:binding>

 <todo:var>city</todo:var>

 </todo:instantiatedBy>

 </todo:param>

 </todo:input>

 </todo:preInformation>

 </todo:task>

 <todo:task>

 <todo:taskID>5</todo:taskID>

 <todo:versionID>1</todo:versionID>

 <todo:model>Travel Guide</todo:model>

 <todo:name>Eat and Drink</todo:name>

 <todo:description></todo:description>

 <todo:language>En</todo:language>

 <todo:author>John Liagouris</todo:author>

 <todo:publisher>IMIS</todo:publisher>

 <todo:createdOn>2009-07-17</todo:createdOn>

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 110 of 129

 <todo:realizedBy>http://www.talos.cti.gr</todo:realizedBy>

 <todo:isGroup>false</todo:isGroup>

 <todo:preInformation>

 <todo:input>

 <todo:param optional="false">

 <todo:name>City</todo:name>

 <todo:type>city</todo:type>

 <todo:description></todo:description>

 <todo:instantiatedBy>

 <todo:binding>USER</todo:binding>

 <todo:var>city</todo:var>

 </todo:instantiatedBy>

 </todo:param>

 </todo:input>

 </todo:preInformation>

 </todo:task>

 <todo:task>

 <todo:taskID>6</todo:taskID>

 <todo:versionID>1</todo:versionID>

 <todo:model>Travel Guide</todo:model>

 <todo:name>Sightseeing</todo:name>

 <todo:description></todo:description>

 <todo:language>En</todo:language>

 <todo:author>John Liagouris</todo:author>

 <todo:publisher>IMIS</todo:publisher>

 <todo:createdOn>2009-07-17</todo:createdOn>

 <todo:realizedBy>http://www.talos.cti.gr</todo:realizedBy>

 <todo:isGroup>false</todo:isGroup>

 <todo:preInformation>

 <todo:input>

 <todo:param optional="false">

 <todo:name>City</todo:name>

 <todo:type>city</todo:type>

 <todo:description></todo:description>

 <todo:instantiatedBy>

 <todo:binding>USER</todo:binding>

 <todo:var>city</todo:var>

 </todo:instantiatedBy>

 </todo:param>

 </todo:input>

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 111 of 129

 </todo:preInformation>

 </todo:task>

 <todo:task>

 <todo:taskID>7</todo:taskID>

 <todo:versionID>1</todo:versionID>

 <todo:model>Travel Guide</todo:model>

 <todo:name>Shopping</todo:name>

 <todo:description></todo:description>

 <todo:language>En</todo:language>

 <todo:author>John Liagouris</todo:author>

 <todo:publisher>IMIS</todo:publisher>

 <todo:createdOn>2009-07-17</todo:createdOn>

 <todo:realizedBy>http://www.talos.cti.gr</todo:realizedBy>

 <todo:isGroup>false</todo:isGroup>

 <todo:preInformation>

 <todo:input>

 <todo:param optional="false">

 <todo:name>City</todo:name>

 <todo:type>city</todo:type>

 <todo:description></todo:description>

 <todo:instantiatedBy>

 <todo:binding>USER</todo:binding>

 <todo:var>city</todo:var>

 </todo:instantiatedBy>

 </todo:param>

 </todo:input>

 </todo:preInformation>

 </todo:task>

 <todo:task>

 <todo:taskID>8</todo:taskID>

 <todo:versionID>1</todo:versionID>

 <todo:model>Travel Guide</todo:model>

 <todo:name>Entertainment</todo:name>

 <todo:description></todo:description>

 <todo:language>En</todo:language>

 <todo:author>John Liagouris</todo:author>

 <todo:publisher>IMIS</todo:publisher>

 <todo:createdOn>2009-07-17</todo:createdOn>

 <todo:realizedBy>http://www.talos.cti.gr</todo:realizedBy>

 <todo:isGroup>false</todo:isGroup>

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 112 of 129

 <todo:preInformation>

 <todo:input>

 <todo:param optional="false">

 <todo:name>City</todo:name>

 <todo:type>city</todo:type>

 <todo:description></todo:description>

 <todo:instantiatedBy>

 <todo:binding>USER</todo:binding>

 <todo:var>city</todo:var>

 </todo:instantiatedBy>

 </todo:param>

 </todo:input>

 </todo:preInformation>

 </todo:task>

 <todo:task>

 <todo:taskID>9</todo:taskID>

 <todo:versionID>1</todo:versionID>

 <todo:model>Travel Guide</todo:model>

 <todo:name>Find a Hotel</todo:name>

 <todo:description></todo:description>

 <todo:language>En</todo:language>

 <todo:author>John Liagouris</todo:author>

 <todo:publisher>IMIS</todo:publisher>

 <todo:createdOn>2009-07-17</todo:createdOn>

 <todo:realizedBy>http://www.talos.cti.gr</todo:realizedBy>

 <todo:isGroup>false</todo:isGroup>

 <todo:preInformation>

 <todo:input>

 <todo:param optional="false">

 <todo:name>City</todo:name>

 <todo:type>city</todo:type>

 <todo:description></todo:description>

 <todo:instantiatedBy>

 <todo:binding>APP</todo:binding>

 <todo:var>city</todo:var>

 </todo:instantiatedBy>

 </todo:param>

 </todo:input>

 </todo:preInformation>

 <todo:postInformation>

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 113 of 129

 <todo:output>

 <todo:param optional="false">

 <todo:name>selected_POI</todo:name>

 <todo:type>list</todo:type>

 <todo:description></todo:description>

 <todo:instantiatedBy>

 <todo:binding>APP</todo:binding>

 <todo:var>POI_list</todo:var>

 </todo:instantiatedBy>

 </todo:param>

 </todo:output>

 </todo:postInformation>

 </todo:task>

 <todo:task>

 <todo:taskID>10</todo:taskID>

 <todo:versionID>1</todo:versionID>

 <todo:model>Travel Guide</todo:model>

 <todo:name>Find a Hostel</todo:name>

 <todo:description></todo:description>

 <todo:language>En</todo:language>

 <todo:author>John Liagouris</todo:author>

 <todo:publisher>IMIS</todo:publisher>

 <todo:createdOn>2009-07-17</todo:createdOn>

 <todo:realizedBy>http://www.talos.cti.gr</todo:realizedBy>

 <todo:isGroup>false</todo:isGroup>

 <todo:preInformation>

 <todo:input>

 <todo:param optional="false">

 <todo:name>City</todo:name>

 <todo:type>city</todo:type>

 <todo:description></todo:description>

 <todo:instantiatedBy>

 <todo:binding>APP</todo:binding>

 <todo:var>city</todo:var>

 </todo:instantiatedBy>

 </todo:param>

 </todo:input>

 </todo:preInformation>

 <todo:postInformation>

 <todo:output>

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 114 of 129

 <todo:param optional="false">

 <todo:name>selected_POI</todo:name>

 <todo:type>list</todo:type>

 <todo:description></todo:description>

 <todo:instantiatedBy>

 <todo:binding>APP</todo:binding>

 <todo:var>POI_list</todo:var>

 </todo:instantiatedBy>

 </todo:param>

 </todo:output>

 </todo:postInformation>

 </todo:task>

 <todo:task>

 <todo:taskID>11</todo:taskID>

 <todo:versionID>1</todo:versionID>

 <todo:model>Travel Guide</todo:model>

 <todo:name>Find an Appartment</todo:name>

 <todo:description></todo:description>

 <todo:language>En</todo:language>

 <todo:author>John Liagouris</todo:author>

 <todo:publisher>IMIS</todo:publisher>

 <todo:createdOn>2009-07-17</todo:createdOn>

 <todo:realizedBy>http://www.talos.cti.gr</todo:realizedBy>

 <todo:isGroup>false</todo:isGroup>

 <todo:preInformation>

 <todo:input>

 <todo:param optional="false">

 <todo:name>City</todo:name>

 <todo:type>city</todo:type>

 <todo:description></todo:description>

 <todo:instantiatedBy>

 <todo:binding>APP</todo:binding>

 <todo:var>city</todo:var>

 </todo:instantiatedBy>

 </todo:param>

 </todo:input>

 </todo:preInformation>

 <todo:postInformation>

 <todo:output>

 <todo:param optional="false">

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 115 of 129

 <todo:name>selected_POI</todo:name>

 <todo:type>list</todo:type>

 <todo:description></todo:description>

 <todo:instantiatedBy>

 <todo:binding>APP</todo:binding>

 <todo:var>POI_list</todo:var>

 </todo:instantiatedBy>

 </todo:param>

 </todo:output>

 </todo:postInformation>

 </todo:task>

 <todo:task>

 <todo:taskID>12</todo:taskID>

 <todo:versionID>1</todo:versionID>

 <todo:model>Travel Guide</todo:model>

 <todo:name>Find a Camping</todo:name>

 <todo:description></todo:description>

 <todo:language>En</todo:language>

 <todo:author>John Liagouris</todo:author>

 <todo:publisher>IMIS</todo:publisher>

 <todo:createdOn>2009-07-17</todo:createdOn>

 <todo:realizedBy>http://www.talos.cti.gr</todo:realizedBy>

 <todo:isGroup>false</todo:isGroup>

 <todo:preInformation>

 <todo:input>

 <todo:param optional="false">

 <todo:name>City</todo:name>

 <todo:type>city</todo:type>

 <todo:description></todo:description>

 <todo:instantiatedBy>

 <todo:binding>APP</todo:binding>

 <todo:var>city</todo:var>

 </todo:instantiatedBy>

 </todo:param>

 </todo:input>

 </todo:preInformation>

 <todo:postInformation>

 <todo:output>

 <todo:param optional="false">

 <todo:name>selected_POI</todo:name>

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 116 of 129

 <todo:type>list</todo:type>

 <todo:description></todo:description>

 <todo:instantiatedBy>

 <todo:binding>APP</todo:binding>

 <todo:var>POI_list</todo:var>

 </todo:instantiatedBy>

 </todo:param>

 </todo:output>

 </todo:postInformation>

 </todo:task>

 <todo:task>

 <todo:taskID>13</todo:taskID>

 <todo:versionID>1</todo:versionID>

 <todo:model>Travel Guide</todo:model>

 <todo:name>Make a Booking</todo:name>

 <todo:description></todo:description>

 <todo:language>En</todo:language>

 <todo:author>John Liagouris</todo:author>

 <todo:publisher>IMIS</todo:publisher>

 <todo:createdOn>2009-07-17</todo:createdOn>

 <todo:realizedBy>http://www.talos.cti.gr</todo:realizedBy>

 <todo:isGroup>false</todo:isGroup>

 <todo:preInformation>

 <todo:input>

 <todo:param optional="false">

 <todo:name>POI</todo:name>

 <todo:type>POI</todo:type>

 <todo:description></todo:description>

 <todo:instantiatedBy>

 <todo:binding>APP</todo:binding>

 <todo:var>POI</todo:var>

 </todo:instantiatedBy>

 </todo:param>

 </todo:input>

 </todo:preInformation>

 </todo:task>

 <todo:task>

 <todo:taskID>14</todo:taskID>

 <todo:versionID>1</todo:versionID>

 <todo:model>Travel Guide</todo:model>

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 117 of 129

 <todo:name>Find a Restaurant</todo:name>

 <todo:description></todo:description>

 <todo:language>En</todo:language>

 <todo:author>John Liagouris</todo:author>

 <todo:publisher>IMIS</todo:publisher>

 <todo:createdOn>2009-07-17</todo:createdOn>

 <todo:realizedBy>http://www.talos.cti.gr</todo:realizedBy>

 <todo:isGroup>false</todo:isGroup>

 <todo:preInformation>

 <todo:input>

 <todo:param optional="false">

 <todo:name>City</todo:name>

 <todo:type>city</todo:type>

 <todo:description></todo:description>

 <todo:instantiatedBy>

 <todo:binding>APP</todo:binding>

 <todo:var>city</todo:var>

 </todo:instantiatedBy>

 </todo:param>

 </todo:input>

 </todo:preInformation>

 <todo:postInformation>

 <todo:output>

 <todo:param optional="false">

 <todo:name>selected_POI</todo:name>

 <todo:type>list</todo:type>

 <todo:description></todo:description>

 <todo:instantiatedBy>

 <todo:binding>APP</todo:binding>

 <todo:var>POI_list</todo:var>

 </todo:instantiatedBy>

 </todo:param>

 </todo:output>

 </todo:postInformation>

 </todo:task>

 <todo:task>

 <todo:taskID>15</todo:taskID>

 <todo:versionID>1</todo:versionID>

 <todo:model>Travel Guide</todo:model>

 <todo:name>Find a Snack-bar</todo:name>

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 118 of 129

 <todo:description></todo:description>

 <todo:language>En</todo:language>

 <todo:author>John Liagouris</todo:author>

 <todo:publisher>IMIS</todo:publisher>

 <todo:createdOn>2009-07-17</todo:createdOn>

 <todo:realizedBy>http://www.talos.cti.gr</todo:realizedBy>

 <todo:isGroup>false</todo:isGroup>

 <todo:preInformation>

 <todo:input>

 <todo:param optional="false">

 <todo:name>City</todo:name>

 <todo:type>city</todo:type>

 <todo:description></todo:description>

 <todo:instantiatedBy>

 <todo:binding>APP</todo:binding>

 <todo:var>city</todo:var>

 </todo:instantiatedBy>

 </todo:param>

 </todo:input>

 </todo:preInformation>

 <todo:postInformation>

 <todo:output>

 <todo:param optional="false">

 <todo:name>selected_POI</todo:name>

 <todo:type>list</todo:type>

 <todo:description></todo:description>

 <todo:instantiatedBy>

 <todo:binding>APP</todo:binding>

 <todo:var>POI_list</todo:var>

 </todo:instantiatedBy>

 </todo:param>

 </todo:output>

 </todo:postInformation>

 </todo:task>

 <todo:task>

 <todo:taskID>16</todo:taskID>

 <todo:versionID>1</todo:versionID>

 <todo:model>Travel Guide</todo:model>

 <todo:name>Find a Cafe</todo:name>

 <todo:description></todo:description>

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 119 of 129

 <todo:language>En</todo:language>

 <todo:author>John Liagouris</todo:author>

 <todo:publisher>IMIS</todo:publisher>

 <todo:createdOn>2009-07-17</todo:createdOn>

 <todo:realizedBy>http://www.talos.cti.gr</todo:realizedBy>

 <todo:isGroup>false</todo:isGroup>

 <todo:preInformation>

 <todo:input>

 <todo:param optional="false">

 <todo:name>City</todo:name>

 <todo:type>city</todo:type>

 <todo:description></todo:description>

 <todo:instantiatedBy>

 <todo:binding>APP</todo:binding>

 <todo:var>city</todo:var>

 </todo:instantiatedBy>

 </todo:param>

 </todo:input>

 </todo:preInformation>

 <todo:postInformation>

 <todo:output>

 <todo:param optional="false">

 <todo:name>selected_POI</todo:name>

 <todo:type>list</todo:type>

 <todo:description></todo:description>

 <todo:instantiatedBy>

 <todo:binding>APP</todo:binding>

 <todo:var>POI_list</todo:var>

 </todo:instantiatedBy>

 </todo:param>

 </todo:output>

 </todo:postInformation>

 </todo:task>

 <todo:task>

 <todo:taskID>17</todo:taskID>

 <todo:versionID>1</todo:versionID>

 <todo:model>Travel Guide</todo:model>

 <todo:name>Find a Bar</todo:name>

 <todo:description></todo:description>

 <todo:language>En</todo:language>

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 120 of 129

 <todo:author>John Liagouris</todo:author>

 <todo:publisher>IMIS</todo:publisher>

 <todo:createdOn>2009-07-17</todo:createdOn>

 <todo:realizedBy>http://www.talos.cti.gr</todo:realizedBy>

 <todo:isGroup>false</todo:isGroup>

 <todo:preInformation>

 <todo:input>

 <todo:param optional="false">

 <todo:name>City</todo:name>

 <todo:type>city</todo:type>

 <todo:description></todo:description>

 <todo:instantiatedBy>

 <todo:binding>APP</todo:binding>

 <todo:var>city</todo:var>

 </todo:instantiatedBy>

 </todo:param>

 </todo:input>

 </todo:preInformation>

 <todo:postInformation>

 <todo:output>

 <todo:param optional="false">

 <todo:name>selected_POI</todo:name>

 <todo:type>list</todo:type>

 <todo:description></todo:description>

 <todo:instantiatedBy>

 <todo:binding>APP</todo:binding>

 <todo:var>POI_list</todo:var>

 </todo:instantiatedBy>

 </todo:param>

 </todo:output>

 </todo:postInformation>

 </todo:task>

 <todo:task>

 <todo:taskID>18</todo:taskID>

 <todo:versionID>1</todo:versionID>

 <todo:model>Travel Guide</todo:model>

 <todo:name>Find a Club</todo:name>

 <todo:description></todo:description>

 <todo:language>En</todo:language>

 <todo:author>John Liagouris</todo:author>

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 121 of 129

 <todo:publisher>IMIS</todo:publisher>

 <todo:createdOn>2009-07-17</todo:createdOn>

 <todo:realizedBy>http://www.talos.cti.gr</todo:realizedBy>

 <todo:isGroup>false</todo:isGroup>

 <todo:preInformation>

 <todo:input>

 <todo:param optional="false">

 <todo:name>City</todo:name>

 <todo:type>city</todo:type>

 <todo:description></todo:description>

 <todo:instantiatedBy>

 <todo:binding>APP</todo:binding>

 <todo:var>city</todo:var>

 </todo:instantiatedBy>

 </todo:param>

 </todo:input>

 </todo:preInformation>

 <todo:postInformation>

 <todo:output>

 <todo:param optional="false">

 <todo:name>selected_POI</todo:name>

 <todo:type>list</todo:type>

 <todo:description></todo:description>

 <todo:instantiatedBy>

 <todo:binding>APP</todo:binding>

 <todo:var>POI_list</todo:var>

 </todo:instantiatedBy>

 </todo:param>

 </todo:output>

 </todo:postInformation>

 </todo:task>

 <todo:task>

 <todo:taskID>19</todo:taskID>

 <todo:versionID>1</todo:versionID>

 <todo:model>Travel Guide</todo:model>

 <todo:name>Get Operating Days/Hours</todo:name>

 <todo:description></todo:description>

 <todo:language>En</todo:language>

 <todo:author>John Liagouris</todo:author>

 <todo:publisher>IMIS</todo:publisher>

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 122 of 129

 <todo:createdOn>2009-07-17</todo:createdOn>

 <todo:realizedBy>http://www.talos.cti.gr</todo:realizedBy>

 <todo:isGroup>false</todo:isGroup>

 <todo:preInformation>

 <todo:input>

 <todo:param optional="false">

 <todo:name>POI</todo:name>

 <todo:type>POI</todo:type>

 <todo:description></todo:description>

 <todo:instantiatedBy>

 <todo:binding>APP</todo:binding>

 <todo:var>POI</todo:var>

 </todo:instantiatedBy>

 </todo:param>

 </todo:input>

 </todo:preInformation>

 </todo:task>

 <todo:task>

 <todo:taskID>20</todo:taskID>

 <todo:versionID>1</todo:versionID>

 <todo:model>Travel Guide</todo:model>

 <todo:name>Find Out Prices</todo:name>

 <todo:description></todo:description>

 <todo:language>En</todo:language>

 <todo:author>John Liagouris</todo:author>

 <todo:publisher>IMIS</todo:publisher>

 <todo:createdOn>2009-07-17</todo:createdOn>

 <todo:realizedBy>http://www.talos.cti.gr</todo:realizedBy>

 <todo:isGroup>false</todo:isGroup>

 <todo:preInformation>

 <todo:input>

 <todo:param optional="false">

 <todo:name>POI</todo:name>

 <todo:type>POI</todo:type>

 <todo:description></todo:description>

 <todo:instantiatedBy>

 <todo:binding>APP</todo:binding>

 <todo:var>POI</todo:var>

 </todo:instantiatedBy>

 </todo:param>

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 123 of 129

 </todo:input>

 </todo:preInformation>

 </todo:task>

 <todo:task>

 <todo:taskID>21</todo:taskID>

 <todo:versionID>1</todo:versionID>

 <todo:model>Travel Guide</todo:model>

 <todo:name>Make a Reservation</todo:name>

 <todo:description></todo:description>

 <todo:language>En</todo:language>

 <todo:author>John Liagouris</todo:author>

 <todo:publisher>IMIS</todo:publisher>

 <todo:createdOn>2009-07-17</todo:createdOn>

 <todo:realizedBy>http://www.talos.cti.gr</todo:realizedBy>

 <todo:isGroup>false</todo:isGroup>

 <todo:preInformation>

 <todo:input>

 <todo:param optional="false">

 <todo:name>POI</todo:name>

 <todo:type>POI</todo:type>

 <todo:description></todo:description>

 <todo:instantiatedBy>

 <todo:binding>APP</todo:binding>

 <todo:var>POI</todo:var>

 </todo:instantiatedBy>

 </todo:param>

 </todo:input>

 </todo:preInformation>

 </todo:task>

 <todo:group ID="22" type="OR">

 <todo:member>9</todo:member>

 <todo:member>10</todo:member>

 <todo:member>11</todo:member>

 <todo:member>12</todo:member>

 </todo:group>

 <todo:group ID="23" type="OR">

 <todo:member>14</todo:member>

 <todo:member>15</todo:member>

 <todo:member>16</todo:member>

 <todo:member>17</todo:member>

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 124 of 129

 <todo:member>18</todo:member>

 </todo:group>

 <todo:group ID="24" type="OR">

 <todo:member>19</todo:member>

 <todo:member>20</todo:member>

 <todo:member>21</todo:member>

 </todo:group>

 <todo:subTaskOf ID="1">

 <todo:member>2</todo:member>

 <todo:member>3</todo:member>

 <todo:member>4</todo:member>

 <todo:member>5</todo:member>

 <todo:member>6</todo:member>

 <todo:member>7</todo:member>

 <todo:member>8</todo:member>

 </todo:subTaskOf>

 <todo:subTaskOf ID="4">

 <todo:member>22</todo:member>

 </todo:subTaskOf>

 <todo:subTaskOf ID="8">

 <todo:member>23</todo:member>

 </todo:subTaskOf>

 <todo:chain ID="1">

 <todo:sequence>

 <todo:member>9</todo:member>

 <todo:member>13</todo:member>

 <todo:dataflow>

<todo:sourceParam>selected_POI</todo:sourceParam>

 <todo:targetParam>POI</todo:targetParam>

 </todo:dataflow>

 </todo:sequence>

 </todo:chain>

 <todo:chain ID="2">

 <todo:sequence>

 <todo:member>10</todo:member>

 <todo:member>13</todo:member>

 <todo:dataflow>

<todo:sourceParam>selected_POI</todo:sourceParam>

 <todo:targetParam>POI</todo:targetParam>

 </todo:dataflow>

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 125 of 129

 </todo:sequence>

 </todo:chain>

 <todo:chain ID="3">

 <todo:sequence>

 <todo:member>11</todo:member>

 <todo:member>13</todo:member>

 <todo:dataflow>

<todo:sourceParam>selected_POI</todo:sourceParam>

 <todo:targetParam>POI</todo:targetParam>

 </todo:dataflow>

 </todo:sequence>

 </todo:chain>

 <todo:chain ID="4">

 <todo:sequence>

 <todo:member>12</todo:member>

 <todo:member>13</todo:member>

 <todo:dataflow>

<todo:sourceParam>selected_POI</todo:sourceParam>

 <todo:targetParam>POI</todo:targetParam>

 </todo:dataflow>

 </todo:sequence>

 </todo:chain>

 <todo:chain ID="5">

 <todo:sequence>

 <todo:member>14</todo:member>

 <todo:member>19</todo:member>

 <todo:dataflow>

<todo:sourceParam>selected_POI</todo:sourceParam>

 <todo:targetParam>POI</todo:targetParam>

 </todo:dataflow>

 </todo:sequence>

 </todo:chain>

 <todo:chain ID="6">

 <todo:sequence>

 <todo:member>15</todo:member>

 <todo:member>19</todo:member>

 <todo:dataflow>

<todo:sourceParam>selected_POI</todo:sourceParam>

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 126 of 129

 <todo:targetParam>POI</todo:targetParam>

 </todo:dataflow>

 </todo:sequence>

 </todo:chain>

 <todo:chain ID="7">

 <todo:sequence>

 <todo:member>16</todo:member>

 <todo:member>29</todo:member>

 <todo:dataflow>

<todo:sourceParam>selected_POI</todo:sourceParam>

 <todo:targetParam>POI</todo:targetParam>

 </todo:dataflow>

 </todo:sequence>

 </todo:chain>

 <todo:chain ID="8">

 <todo:sequence>

 <todo:member>17</todo:member>

 <todo:member>19</todo:member>

 <todo:dataflow>

<todo:sourceParam>selected_POI</todo:sourceParam>

 <todo:targetParam>POI</todo:targetParam>

 </todo:dataflow>

 </todo:sequence>

 </todo:chain>

 <todo:chain ID="9">

 <todo:sequence>

 <todo:member>18</todo:member>

 <todo:member>19</todo:member>

 <todo:dataflow>

<todo:sourceParam>selected_POI</todo:sourceParam>

 <todo:targetParam>POI</todo:targetParam>

 </todo:dataflow>

 </todo:sequence>

 </todo:chain>

 <todo:chain ID="10">

 <todo:sequence>

 <todo:member>14</todo:member>

 <todo:member>20</todo:member>

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 127 of 129

 <todo:dataflow>

<todo:sourceParam>selected_POI</todo:sourceParam>

 <todo:targetParam>POI</todo:targetParam>

 </todo:dataflow>

 </todo:sequence>

 </todo:chain>

 <todo:chain ID="11">

 <todo:sequence>

 <todo:member>15</todo:member>

 <todo:member>20</todo:member>

 <todo:dataflow>

<todo:sourceParam>selected_POI</todo:sourceParam>

 <todo:targetParam>POI</todo:targetParam>

 </todo:dataflow>

 </todo:sequence>

 </todo:chain>

 <todo:chain ID="12">

 <todo:sequence>

 <todo:member>16</todo:member>

 <todo:member>20</todo:member>

 <todo:dataflow>

<todo:sourceParam>selected_POI</todo:sourceParam>

 <todo:targetParam>POI</todo:targetParam>

 </todo:dataflow>

 </todo:sequence>

 </todo:chain>

 <todo:chain ID="13">

 <todo:sequence>

 <todo:member>17</todo:member>

 <todo:member>20</todo:member>

 <todo:dataflow>

<todo:sourceParam>selected_POI</todo:sourceParam>

 <todo:targetParam>POI</todo:targetParam>

 </todo:dataflow>

 </todo:sequence>

 </todo:chain>

 <todo:chain ID="14">

 <todo:sequence>

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 128 of 129

 <todo:member>18</todo:member>

 <todo:member>20</todo:member>

 <todo:dataflow>

<todo:sourceParam>selected_POI</todo:sourceParam>

 <todo:targetParam>POI</todo:targetParam>

 </todo:dataflow>

 </todo:sequence>

 </todo:chain>

 <todo:chain ID="15">

 <todo:sequence>

 <todo:member>14</todo:member>

 <todo:member>21</todo:member>

 <todo:dataflow>

<todo:sourceParam>selected_POI</todo:sourceParam>

 <todo:targetParam>POI</todo:targetParam>

 </todo:dataflow>

 </todo:sequence>

 </todo:chain>

 <todo:chain ID="16">

 <todo:sequence>

 <todo:member>15</todo:member>

 <todo:member>21</todo:member>

 <todo:dataflow>

<todo:sourceParam>selected_POI</todo:sourceParam>

 <todo:targetParam>POI</todo:targetParam>

 </todo:dataflow>

 </todo:sequence>

 </todo:chain>

 <todo:chain ID="17">

 <todo:sequence>

 <todo:member>16</todo:member>

 <todo:member>21</todo:member>

 <todo:dataflow>

<todo:sourceParam>selected_POI</todo:sourceParam>

 <todo:targetParam>POI</todo:targetParam>

 </todo:dataflow>

 </todo:sequence>

 </todo:chain>

D2.1 Task Model and Authoring Tool TALOS

D2.1_Task_Model_and_Authoring_Tool.doc 129 of 129

 <todo:chain ID="18">

 <todo:sequence>

 <todo:member>17</todo:member>

 <todo:member>21</todo:member>

 <todo:dataflow>

<todo:sourceParam>selected_POI</todo:sourceParam>

 <todo:targetParam>POI</todo:targetParam>

 </todo:dataflow>

 </todo:sequence>

 </todo:chain>

 <todo:chain ID="19">

 <todo:sequence>

 <todo:member>18</todo:member>

 <todo:member>21</todo:member>

 <todo:dataflow>

<todo:sourceParam>selected_POI</todo:sourceParam>

 <todo:targetParam>POI</todo:targetParam>

 </todo:dataflow>

 </todo:sequence>

 </todo:chain>

</model>

