

Task-Aware Location-Based Services for
Mobile Environments

FP7-SME-207-1-222292-TALOS

Content Adaptation Technology
D3.1
Deliverable lead contractor: CTI

Alexandros Efentakis efedakis@cti.gr
Anna Stathaki stathaki@cti.gr
Dieter Pfoser, CTI pfoser@cti.gr

Due data: 30.8.2009
Actual submission date: 13.11.2009

Abstract
Presents (i) design of a content repository, (ii) a methodology for
converting digital content to the repository, (iii) a Web interface for
accessing content and geocoding tools.

Copyright © 2009 TALOS consortium – http://www.talos.cti.gr

Research Academic Computer Technology Institute, Greece
Fraunhofer Gesellschaft, Institute for Software and Systems Engineering, Germany
Institute for the Management of Information Systems / Athena Research and Innovation Center in
Information, Communication and Knowledge Technologies, Greece
Katholieke Universiteit Leuven, Belgium
Michael Müller Verlag, Germany
Talent SA, Greece
WiGeoGIS, Austria

D3.1 Content Adaptation Technology TALOS

D3.1_content_adaptation_technology_v1.doc 2 of 34

D3.1 Content Adaptation Technology TALOS

D3.1_content_adaptation_technology_v1.doc 3 of 34

Table of Contents

1 INTRODUCTION ... 5

2 CONVERTING CONTENT ... 5

2.1 DOCX FILE OVERVIEW .. 6

2.2 DOCX FILES PREPARATION AND SIMPLIFICATION .. 7

2.3 PARSING THE DOCX FILES AND INTERMEDIATE STORAGE... 10

2.4 DATA MODEL AND IMPLEMENTATION .. 13

3 WEB INTERFACE .. 18

3.1 INTRODUCTION .. 18

3.2 SYSTEM ARCHITECTURE .. 18

3.3 DESCRIPTION OF THE WEB APPLICATION .. 25

3.4 PUBLIC PART .. 25

3.5 LIMITED ACCESS PART ... 26

3.6 CONCLUSIONS... 34

D3.1 Content Adaptation Technology TALOS

D3.1_content_adaptation_technology_v1.doc 4 of 34

D3.1 Content Adaptation Technology TALOS

D3.1_content_adaptation_technology_v1.doc 5 of 34

1 Introduction
An essential aspect in TALOS is flexible and efficient content management. To
that respect, this deliverables outlines (i) how to store existing content in a
flexible manner and (ii) to provide a simple means for its manipulation and
presentation.

One of the prerequisites of the TALOS project is creating a content repository
that will be fully linked with the task hierarchy. Having content readily available
from a project partner most of the approach focuses travel guides provided by
TALOS partner MMV. However, any content source could be used in the process.

In addition, to provide for a flexible means of content manipulation, a Web
interface was developed to presents the content stored in the database, allows
for editing, and more importantly its geocoding. The interface provides for
authentication and respective user rights management.

The following sections first present the content manipulation techniques, i.e.,
how to arrive from digital content sources at structured information stored in a
database and subsequently describes the Web interface.

2 Converting Content
Being the only publishing partner, MMV provided us with the type of content they
want to store in a universal repository. However, while the following
methodology is described in terms of the specific content, it is universally
applicable for any (digital) content source.

Each MMV travel guide is comprised from many docx files (native Microsoft Word
2007 format). Therefore, it was crucial to have a solid knowledge of the relatively
new docx format.

MMV mainly deals with printed travel guides (although it features some electronic
guides as well). Therefore its travel guides are mainly focused for printing
purposes. From its beginning MMV used Microsoft Word for its DTP jobs.
Consequently, the travel guides provided for the TALOS project are in Microsoft
Word 2007 format (docx files). The docx format is the first attempt of Microsoft,
towards a purely XML based format for storing office documents. This format is
relatively new, so very few developers have actually developed applications for
docx creation and manipulation. Also, since it is created by a commercial
company like Microsoft, it is faced with mixed emotions from the open source
community which favours the ODF format (the Open Office XML based format for
storing office documents). One of the challenges of the TALOS project is to deal
with this rather new format.

As a result, the TALOS workflow must use these docx files in order to fill the
TALOS content repository. This process is roughly illustrated in the diagram
below:

D3.1 Content Adaptation Technology TALOS

D3.1_content_adaptation_technology_v1.doc 6 of 34

Figure 1: TALOS workflow rough description

Of course this rough description of the TALOS workflow includes several
intermediate steps with varied levels of complexity. Those intermediate steps,
along with the content repository data model will be described in the following
sections.

2.1 Docx file overview

Docx files are based on the Office Open XML standard (also referred to as
OOXML, or Open XML) created by Microsoft. OOXML is not only limited to
Microsoft Word files but is also a file format for representing Excel spreadsheets
or PowerPoint presentations. A docx file (like all Office Open XML files) is a ZIP-
compatible package containing XML documents along with binary files, such as
image files, along with a specification of the relationships between them.

A basic docx file contains an XML file called [Content_Types].xml at the root,
along with three directories: _rels, docProps and word). The word directory
contains the document.xml file which is the core content of the document.

The [Content_Types].xml file provides MIME type information for parts of the
package, using defaults for certain file extensions and overrides for parts
specificied by IRI.

The _rels directory contains relationships for the files within the package. To find
the relationships for a specific file, look for the _rels directory that is a sibling of
the file, and then for a file that has the original file name with a .rels appended to
it. For example, if the content types file had any relationships, there would be a
file called [Content_Types].xml.rels inside the _rels directory.

The _rels/.rel file is where the package relationships are located. The Microsoft
Office applications look here first. When viewed in a text editor, one will see it
outlines each relationship for that section. In a minimal document containing only
the basic document.xml file, the relationships detailed are metadata and
document.xml.

The docProps/core.xml file contains the core properties for any Office Open XML
document.

As stated previously the word/document.xml file is the core content of any Word
document.

So, basically in order to store a docx file in the TALOS repository, a custom Java
application had to be built that reads specific XML files stored inside the docx file.

MMV Word document

(docx files)

TALOS

Processing

TALOS
content

repository

D3.1 Content Adaptation Technology TALOS

D3.1_content_adaptation_technology_v1.doc 7 of 34

2.2 Docx files preparation and simplification

A word document (represented by a docx file) has a wealth of formatting
information. Most of this formatting information is significant such as paragraph
and character styles, because styles are used (or at least should be used) for
identifying different types of content, such as chapter, section and subsection
titles, image captions, TOC, indexes. In other cases Word uses formatting for
identifying certain elements (such as hyperlinks, email links, prices, addresses)
or strictly for visual purposes (bold, italics). This kind of formatting information is
crucial and therefore should be also stored on our content repository.

On the other hand, some of the Word formatting information is of no actual
structural use, such as spell checking marks, blank lines, tables, headers and
footers, column breaks, section breaks, page breaks, comments, reviewing
remarks and so-on. Unfortunately Microsoft Word also stores all this Word
specific formatting information in the ‘document.xml’ file inside the docx file and
therefore there is no easy way to separate useful from non-useful formatting
commands.

Consequently, the process of parsing the docx files and inserting their content on
the content repository should preserve all necessary structural information and
remove all unnecessary Word specific formatting, which is bloated and has no
actual use outside the Word application. Since we do not want to alter the
original documents, we will create a ‘simplified’ version of each docx file that will
be stored on a separate file. Once all ‘simplified’ versions of the original docx files
are created, these are the files we will parse by our custom Java parser and not
the original docx files, which will remain untouched.

This process can be described in the following diagram:

Figure 2: Preparation of docx files

The ‘manual tweaking’ phase is required to correct inconsistencies in the use of
styles by the document authors. This is a common problem in all DTP companies.
Although publishers always impose specific rules (which require the use of
specific styles throughout the whole publishing organization) for formatting all
kinds of business documents, these rules are rarely followed entirely by the

MMV Word document

(docx file)

Simplified Word

document
(docx files)

Manual

tweaking

Automatic
cleaning

(Word macro

D3.1 Content Adaptation Technology TALOS

D3.1_content_adaptation_technology_v1.doc 8 of 34

authors or graphic designers. This is also a major problem with MMV documents,
because each author is also responsible for the formatting of the travel guide he
writes and therefore a central external interference (by the publisher) that could
flatten inconsistencies in the use of styles is rather minimal.

After the manual tweaking phase and in order to automate the process of
removing all unnecessary formatting information from the docx files, a Word
macro was developed. What does this macro do?

� Opens all docx files on a given directory

� Removes comments, reviewing marks, spelling information, headers and
footers, blank lines, hyphenation, section, column, page breaks

� Converts multicolumn content to just one column

� Convert tables to text

� Removes all direct character and paragraph formatting (formatting that is
not done through proper use of styles)

� Stores the result as a separate doc file, with a certain suffix.

The result is much cleaner docx files which are easier to parse (as illustrated on
the following picture).

Figure 3: The word document in its initial form

D3.1 Content Adaptation Technology TALOS

D3.1_content_adaptation_technology_v1.doc 9 of 34

Figure 4: The simplified word document after execution of the Word
macro

The aforementioned process revealed several issues:

� The document provider (MMV) has not always used separate styles, for
identifying different kinds of structural elements (eg. The style Heading 2 is
used both for chapter and section headings).

� Sometimes, styles are not used at all. Instead the document author just
applied direct character formatting (bold, colors, font size). This kind of
information is lost and cannot be evaluated, since there is no way to tell if a
bold portion of text is an email, or a hotel name, since they share the same
formatting.

Therefore it is crucial for the document author to:

� Use a limited set of predefined styles for all his documents

� Use different styles for different types of content

� Avoid the use of direct paragraph and character formatting if possible, and
ONLY ON TOP of existing styles.

For the sample travel guides provided by the MMV partner, things were not that
discouraging as far as the first two cases are concerned (styles were pretty
consistent on most cases), so a little manual tweaking was pretty sufficient to do
the job.

After the simplification of the docx files, the docx files are ready for manipulation.
This process will be described in the subsequent section

D3.1 Content Adaptation Technology TALOS

D3.1_content_adaptation_technology_v1.doc 10 of 34

2.3 Parsing the docx files and intermediate storage

As stated previously, a docx file is basically a ZIP package containing various
XML files. The word/document.xml is the the core content of any Word
document. A typical travel guide also contains images, which are binary files. The
information about which binary files are used in the Word document is stored
inside word/_rels/document.xml.rels. So, basically parsing a docx document
means parsing only those 2 xml files (word/document.xml and
word/_rels/document.xml.rels) inside the docx package. That simplifies our work
significantly.

Another issue that must be pointed out is that Office Open XML does not use
mixed content but uses elements to put a series of text runs (element name r)
into paragraphs (element name p). The result is terse and highly nested in
contrast to HTML, for example, which is fairly flat, designed for humans to write
in text editors and is more congenial for humans to read. On the other hand,
XML files that do not contain mixed content are easier to parse and therefore the
standard Java parser SAX2 is adequate for performing this task, without the
need for any external Java libraries.

A travel guide consists of many docx files. It is assumed that for each travel
guide, we create a separate folder for putting all the docx files associated with
the specific travel guide.

Converting XML files to RDBMS has always been a very lively subject in the IT
community. Instead of directly mapping the Word XML files to our data model, a
new hybrid solution was suggested. Our approach is based on the fact that an
XML document is basically a tree like structure of elements. Therefore storing the
complete structure of an XML document (regardless of the actual XML tags)
requires only 2 RDBMS tables. One for elements and one for attributes.

PostgreSQL the RDBMS of choice for TALOS (more on why PostgreSQL was
selected will be mentioned on the data model section), features a Ltree module
which may be used for describing tree like structures. Consequently we have all
the necessary tools to describe the tree like structure of the XML document in
our RDBMS.

This process is described on the following diagram:

Figure 5: Parsing the docx files

Simplified Word

document
(docx files)

CTI custom
Java parser

Intermediate

storage
elements &

attributes db
tables

D3.1 Content Adaptation Technology TALOS

D3.1_content_adaptation_technology_v1.doc 11 of 34

2.3.1 The elements table

The elements table has the following fields:

� id

� element_path

� element_level

� element_name

� element_value

� word_path text

� word_file text

� xml_path text

� xml_file text

Elements are assigned a unique id (field id) per document (basically a counter
that increments when a new XML element-tag opens). This is the id field that
fully identifies an element within an XML document.

Each element record has also an element_path field that describes the full
element ‘nestingness’. For example an element with id=156 may have an
element path field like ‘1.45.89.156’ meaning that the element 156 is inside
element 89, element 89 is inside the element 45 and element is inside element 1
(element with id 1 is always the root element of the XML document and therefore
all XML elements path have 1 as their first ‘ingredient’).

The element_level field describes how deeply nested is the XML element. In our
previous example the element 156 has an element_level of 4.

The element_name is the name of the XML element-tag (e.g w:p for
paragraphs)

The element_value is the value of the XML element. For example, OOXML
stores text inside w:t tags (eg. <w.t>This is my text</w.t>. So ‘w:t’ is the
element name and ‘This is my text’ is the element_value).

The word_path is the folder where the docx file is located (can be used to
identify different travel guides)

The word_file is the name of the docx file.

The xml_path is the folder where the XML file is located inside the docx package
(For example the word/document.xml has an xml_path value of ‘word’.

The word_file is the name of the XML file, within the docx file (eg.
document.xml).

As mentioned before, PostgreSQL features an Ltree module that is appropriate
for querying tree-like structures. The field element_path is of Ltree datatype and
can be gist-indexed. Therefore querying the XML documentin order to get all
paragraphs’ text (paragraph is the w:p tag and text is stored in w:t tag) can be
broken in 2 simple subqueries. Find the ids of all elements with
element_name=‘w:p’ and find all elements with element_name=‘w:t’ that are
‘children’ of the paragraphs element (the Ltree module can execute such
queries).

D3.1 Content Adaptation Technology TALOS

D3.1_content_adaptation_technology_v1.doc 12 of 34

2.3.2 The attributes table

The attributes table has the following fields:

� element_id

� seq_indx

� attribute_name

� attribute_value

� word_path

� word_file

� xml_path

� xml_file

The element_id links the attribute with the element in the ‘elements’ table that
this attribute belongs.

The seq_indx holds the information if this attribute is the first or second
attribute for a specific element. Although, altering the attributes sequence within
an element is permitted in most XML schemas, it is better to keep this
information for covering even worst case scenarios.

The attribute_name is the name of the XML attribute

The attribute_value is the value of the XML attribute. For example <w:pStyle
w:val="Heading1"/>. So ‘w:val’ is the attribute name and ‘Heading1’ is the
attribute_value).

2.3.3 Storing OOXML in the tree-like RDBMS format assessment

Our Ltree approach is not RDBMS neutral and does not follow standard SQL
specifications. However, other RDMBS have similar strategies for describing tree-
like structures (Oracle has tree extensions simulating similar functionality), so
therefore our approach could also be ported to some other RDBMS, if needed. On
the other hand, we could directly query the XML documents through XQuery, but
that would require 2 different databases. One pure XML database for storing the
XML documents and one relational database that holds our data model.
Although, some RDBMS (like Oracle or SQL Server) feature an XML datatype,
that can be queried through XQuery as well, storing a whole XML document as
only one record, would be slower and we still had to combine 2 query languages
(SQL and XQuery instead of just SQL).

Storing XML documents as tree-like structures in a RDBMS, has also the obvious
advantage that if the raw data is provided in some other XML format, there is
nothing that needs to be changed in our approach. We will use the exact same
Java parser and we simply have to slightly alter the SQL queries and stored
procedures to extract the kind of information we need.

D3.1 Content Adaptation Technology TALOS

D3.1_content_adaptation_technology_v1.doc 13 of 34

Another rather obvious advantage of storing the whole XML structure of the
document in our RDBMS, is that we can extract the information we want at any
abstraction level. For example, in our proposed data model (which will be
described in the next section), paragraph is our lowest level structural unit. If we
later choose, that we should choose a smaller structural unit (such as a sentence
or even a phrase), there will be no need to go back to the original docx
documents, we simply have to rearrange our SQL queries to provide us with the
chosen level of detail.

As a conclusion, by using Ltree and SQL queries and taking advantage of the
Ltree capabilities of PostgreSQL, we could extract any information from the XML
document directly from our intermediate storage db tables. By using stored
procedures, we can automate those SQL queries in order to automatically fill our
TALOS content repository from our intermediate storage db tables, elements and
attributes.

This process can be seen in the following diagram

Figure 6: Filling the TALOS content repository from the elements and
attributes table

In the following section we will discuss about our TALOS data model.

2.4 Data model and implementation

2.4.1 Introduction

Although travel guides have a lot of different thematic sections, they are written
in way to be enjoyable and easy to read, than be treated as raw pieces of data.
Thus, as even the TALOS partner MMV suggested, it is very difficult to create a
thematic data model that will cover all travel guides. Travel guides are written by
creative authors, each following his unique style of writing and preferences. The
publishers do not want to impose limitations on the authors’ creative writing,
because that would affect the quality and readability of the final result and
usually the publisher’s clients were attracted to the publisher’s book, due to the
quality of the author’s work. Therefore no publisher wants to ‘fix something that
is not broken’ and impose limitations on the author’s creativity.

That means that we have very diverse travel guides (even when written by the
same author) because they are written either a) in distant periods of time or b)
by different authors. Even when travel guides are re-published (every 2 years)
they are not re-written from scratch but they are simply revised in order to keep
up with changes in hotels, public transport, new museums or other places of
interest.

Therefore trying to create a thematic model that will cover all travel guides will
prove to be (if even possible) a very time consuming task. Therefore, we focused
our effort to create a purely structural data model with paragraph as the lowest
level structural unit. A book is a collection of paragraphs after all, in which some

Stored

procedures

(SQL – Ltree)

TALOS
content

repository

Intermediate

storage
elements &

attributes db
tables

D3.1 Content Adaptation Technology TALOS

D3.1_content_adaptation_technology_v1.doc 14 of 34

paragraphs have special structural meaning, such as chapter and section titles.
We must also keep in mind that the travel guides were provided in Microsoft
Word format, which is a DTP format describing a book’s layout and not in some
hierarchical XML or RDBMS format. Therefore we could not automatically extract
thematic information that simply does not exist from a simple DTP layout.

There is also another issue. The only way to identify special paragraphs (inside
the Word file) that have a special meaning, such as chapter or section titles, was
by the use of special paragraph styles (like in HTML <h1> identifies ‘chapters’,
<h2> identifies ‘sub-chapters’ or ‘sections’, <h3> identifies ‘sub-sections’ and
so-on). Therefore for each paragraph we should also store their ‘Word’ style,
because that is what identifies those special paragraphs

Unfortunately 3 new issues came up

� Two travel guides do not necessarily share the same set of styles. Therefore
chapter titles on one travel guide are represented from a different
paragraph style than chapter titles on the second travel guide.

� The same travel guide does not always make consistent use of the existing
styles. For example a ‘heading 3’ style may be used to describe an actual
‘heading 5’section title. That happens because a) the authors are not
disciplined enough b) Microsoft Word is not a Content Management System,
to enforce certain limitations on the authors.

� In very few cases, styles are not used at all. For example chapter titles are
not described by some ‘Heading 1’ style but with direct paragraph
formatting (font size 18, bold).

The first problem means that we have to study each travel guide and extract the
set of styles used.

The third problem requires some manual tweaking directly on the Microsoft Word
file (this step is done on the ‘manual tweaking phase’ of the preparation of MMV
docx files).

The second issue has to be resolved inside our data model. Our data model
should keep track of the current nesting level. For example Chapter titles are
level 1, sub-chapters or sections are level 2 and subsections are level 3 and so-
on.

In order to link paragraphs to the section (defined by their section title) we
should keep for each paragraph its parent section information.

A paragraph may also include (besides text) an image (only one image per
paragraph was encountered in the travel guides we were provided with).
Therefore we should also keep the type of content (text or image) stored in a
paragraph, along with the image information (the actual image file).

Initially there was also no need to store the sequence of paragraphs within a
section with a separate field, because the Word file (=docx file =
word/document.xml file) is in fact a sequential text file and therefore paragraphs
are assigned (by our Java parser) unique auto-increment ids when they are
stored. Thus, the paragraph ids actually include the paragraph sequence within
the docx file. Perhaps (on a later phase and for strictly implementation reasons)
we could add a ‘sequence’ field which will be automatically generated from the
paragraph ids.

All those results can be summarized in the following section:

D3.1 Content Adaptation Technology TALOS

D3.1_content_adaptation_technology_v1.doc 15 of 34

2.4.2 Textual description of data model

� Paragraph is the lowest structural unit we will use.

� Each paragraph is assigned a unique id

� Each paragraph may have text and an image. Therefore we need to store
the type of content inside a paragraph (is it text or image?), the actual text
and the image file information.

� Each paragraph has a paragraph style that may be used for identifying
chapter titles, section titles and so-on).

� For each paragraph that holds chapter or section title we should have the
level information describing how deeply nested this section title is, within
the book hierarchy.

� Each paragraph belongs to the section title paragraph encountered
immediately before the specific paragraph. Therefore for each paragraph we
should store the parent section title that the specific paragraph belongs. If
the paragraph represents a section title, its parent is the chapter title that
this section belongs and so-on. This recursive model will be able to cover all
cases, regardless of the book hierarchy.

� We should store the folder that the docx file existed (as we said before all
docx files that belong to a specific travel guide are stored inside a separate
folder and therefore the folder information links the paragraph to the actual
travel guide).

� We should store the name of the docx file (so it will be easy to cross check
the content of the paragraph with the Word file from which the paragraph
was extracted).

2.4.3 Data model

From what is described in the previous section, only one RDBMS table is
sufficient to store the structural hierarchy of a book. Although this may sound an
over-simplified abstraction, the simplicity of our data model will be very easy to
handle during the repurposing of the Travel guides

This is the ER diagram of our data model

Figure 7: The ER of our paragraph data model

D3.1 Content Adaptation Technology TALOS

D3.1_content_adaptation_technology_v1.doc 16 of 34

The para_autoinc field is the unique id assigned per paragraph

The type_of content field may take the values ‘1’ if we are talking about the
text content of the paragraph, or ‘2’ if we are talking about the image content of
the paragraph.

The paragraph_text field holds the actual text of the paragraph. This field will
have a value of null for all records with type_of content=2.

The word_path field holds the folder where the docx file resided. From that field
we could separate the content of 2 travel guides, since the docx files of one
travel guide are stored in a different folder than the docx files of the second
travel guide.

The word_file field holds the name of the original docx file

The para_style field holds the paragraph style used on the docx file for each
paragraph. This field may be used for identifying chapter titles, section titles and
so-on.

The paragraph_text_en field holds the actual text of the paragraph translated
in English. This translation is provided by a translation module, developed by CTI
for a previous project (CITER – http://citer.cti.gr). The CTI translation module
uses Google AJAX Language API (http://code.google.com/intl/el-
GR/apis/ajaxlanguage/) in order to provide translation for various languages.
Since, all travel guides were provided in German it is crucial to have some kind of
English translation (even if it is not perfect), in order to understand the meaning
of the paragraph.

The original_language field holds the original language (=German) of the docx
file. This field was necessary for the CTI translation module

The section_level field holds the nesting level of section titles. Therefore this
field holds a value of null for simple main text paragraphs. For chapter titles
value = ‘1’, for sub-chapters=sections value =’2’, for subsections value=’3’ and
so-on.

The parent_para_autoinc field describes in which section this specific
paragraph belongs. This field can only take values already existing in the
para_autoinc field, since it links recursively paragraphs with their parent
paragraph.

The image_src_total field is the file reference to an image file used on the
Word file. This field holds a value of null for all records with type_of content=1.

The image_autoinc_total field is an autoincrement counter for the images
encountered. It is just a way to uniquely identify images.

2.4.4 Implementation

We decided to use PostgreSQL for our RDBMS uses. PostgreSQL is a powerful,
open source object-relational database system. It has more than 15 years of
active development and runs on all major operating systems, including Linux,
UNIX (AIX, BSD, HP-UX, SGI IRIX, Mac OS X, Solaris, Tru64), and Windows.

It is fully ACID compliant, has full support for foreign keys, joins, views, triggers,
and stored procedures (in multiple languages). It includes most SQL92 and
SQL99 data types, including INTEGER, NUMERIC, BOOLEAN, CHAR, VARCHAR,
DATE, INTERVAL, and TIMESTAMP. It also supports storage of binary large
objects, including pictures, sounds, or video. It has native programming

D3.1 Content Adaptation Technology TALOS

D3.1_content_adaptation_technology_v1.doc 17 of 34

interfaces for C/C++, Java, .Net, Perl, Python, Ruby, Tcl, ODBC, among others,
and exceptional documentation.

PostgreSQL boasts sophisticated features such as Multi-Version Concurrency
Control (MVCC), point in time recovery, tablespaces, asynchronous replication,
nested transactions (savepoints), online/hot backups, a sophisticated query
planner/optimizer, and write ahead logging for fault tolerance.

It supports international character sets, multibyte character encodings, Unicode,
and it is locale-aware for sorting, case-sensitivity, and formatting. It is highly
scalable both in the sheer quantity of data it can manage and in the number of
concurrent users it can accommodate. Some general PostgreSQL limits are
included in the table below.

Limit Value

Maximum Database Size Unlimited

Maximum Table Size 32 TB

Maximum Row Size 1.6 TB

Maximum Field Size 1 GB

Maximum Rows per Table Unlimited

Maximum Columns per Table 250 - 1600 depending on column types

Maximum Indexes per Table Unlimited

It is obvious that PostgreSQL is more than capable for our data model needs in
terms of size. For example, CTI has used PostgreSQL in the CITER project
(http://citer.cti.gr) as well, where the database included more than 1100 tables
and stored more than 50 printed books, with 1 multimedia DVD and one entire
encyclopaedia, for a total of more than 80000 paragraphs translated in 6
languages. PostgreSQL had proved more than adequate to handle this kind of
workload.

PostgreSQL also allows the return of partial result sets (with LIMIT/OFFSET) and
supports compound, unique, partial, and functional indexes which can use any of
its B-tree, R-tree, hash, or GiST storage methods.

Another reason for choosing PostgreSQL over other open source RDBM systems
is PostGIS. PostGIS is a project which adds support for geographic objects in
PostgreSQL, allowing it to be used as a spatial database for geographic
information systems (GIS), much like ESRI's SDE or Oracle's Spatial extension.
Since location is an important aspect of TALOS project, we needed a RDBMS with
the best possible support for geographic objects.

Another feature of PostgreSQL used in the TALOS project, is the Ltree module
that may be used for storing tree-like structures. The tree-like structure of any
book or task can be fully visualized with the Ltree datatype available in
PostgreSQL, opening new possibilities in structural queries.

Best of all, PostgreSQL's source code is available under the most liberal open
source license: the BSD license. This license gives you the freedom to use,
modify and distribute PostgreSQL in any form you like, open or closed source.

D3.1 Content Adaptation Technology TALOS

D3.1_content_adaptation_technology_v1.doc 18 of 34

3 Web Interface

3.1 Introduction

The object of this deliverable is to present the various phases of development of
the TALOS web-based interface for the annotation and authoring tool detailed in
WP3 of the proposal. The design and implementation of the application is
described in detail.

Semantic Data Markup comprises technologies that allow for efficient re-use of
existing content and automatic creation of metadata. Data adaptation technology
has been developed for maximal re-use of existing content. Spatial and temporal
data are important metadata for content used in mobile services. In this WP
RACTI has developed automatic parsing technology based on identifying
geomarkers in texts and relating them to existing geocoded repositories. Further,
using Web scraping technology, Web content is intermixed with authored content
to exploit Web engineering and knowledge management expertise. Finally, the
metadata has been integrated in an overall metadata framework for structured
content.

3.2 System Architecture

The architecture of the system is guided by the ultimate purpose of the
component subsystems which are then integrated into a single user-friendly
environment which can be readily used by authors.

At the outset the requirements and specification of all the relevant modules and
their functionality are defined. The next step requires the design of the
interfacing between the various modules that make up the overall authoring
system. This ensures that a common communication protocol is used between
modules, in order that independent work can be simultaneously carried out
between development teams thereby facilitating substitution of modules by
functional equivalents.

The system description is best observed from two view-points: the logical
viewpoint, which is a synopsis of the abstract specification of all the system
modules and their interactions and, secondly, the physical viewpoint which lays
out the details of the system architecture including the development and target
platforms as well as the software tools that are used.

3.2.1 Logical View of the system

The information flow in response to a user query and the interactions between
the modules is shown in the figure below. Through the Graphical User Interface
(GUI), the user makes queries which are executed by the Data Management
(DM) module. Each query activates a specific subsystem that is related to a
specific view of the data stored in the database. The logical view of the system is
indicative for the development of the application. The system is totally
transparent to the user.

3.2.2 Physical View of the system

The logical system view does not describe how the modules are implemented or
how communication between these modules is realized. These details are left to
the subsections presented below.

D3.1 Content Adaptation Technology TALOS

D3.1_content_adaptation_technology_v1.doc 19 of 34

Figure 1 – Interactions among the sub-systems

3.2.3 Development environment

The requirement for processing and accessing of large quantities of information
distributed over a wide area using web-based techniques requires specialized
software tools with embedded database management as well as efficient and
effective communications. Re-usability of code of the software system is
imperative for rapid development of web-based applications.

A suitable development environment which satisfies all these requirements is
Ruby on Rails (ROR or simply ‘Rails’). This environment has been used to develop
all the modules of the system.

3.2.4 Brief description of the ‘Rails’ environment

‘Rails’ is an open source environment that is extensively used for the
development of web-based systems (‘Tweeter’ is an example) and is written in
Ruby, a high level object based language. The end code is far more compact
than any other environment and the time to develop far shorter.

User

Web Publishing sub-
system (WPU)

Web Publishing of
Travel Guides

 Graphical User Interface
(GUI)

Query Execution

Geographical Data sub-
system (GEO)

Geographical Data
management

Data Manager DM

WPU view

TXT view

GUI

Database

Text Editing sub-system
(TXT)

Text editing
GEO
view

D3.1 Content Adaptation Technology TALOS

D3.1_content_adaptation_technology_v1.doc 20 of 34

The ‘Rails’ environment continuously evolves in response to user requirements
and offers high usability, compactness, robustness and inter-operability. A few of
the properties of ‘Rails’ stand out:

DRY or "Don't Repeat Yourself": ‘Rails’ supports the principles of DRY
programming. Once a change is decided upon its not necessary to modify the
code in more than one authoritative location. ‘Rails’ also adheres to the DRY
principle when it comes to implementing cutting edge techniques such as Ajax
(Asynchronous JavaScript and XML). Ajax is an approach that allows a web
application to replace content in the user’s browser dynamically or to exchange
form data with the server without reloading a page. Developers often find
themselves duplicating code while creating Ajax applications even though
browsers that do not support Ajax. ‘Rails’ makes it easy to treat each browser
generation without duplication of code.

Convention Over Configuration refers to the fact that ‘Rails’ assumes a number of
defaults for a typical web application. ‘Rails’ has been created in such a way that
it does not require excessive configuration, if certain standard conventions are
followed. The result is that lengthy configuration files are not necessary. Indeed
there is no need to change these defaults. ‘Rails’ requires only a single short
configuration file in order to execute an application. This file is used to establish
the database connection and supplies ‘Rails’ with the necessary database server
type, server name, user name and password for each environment.

Agile Development: traditional approaches to software development, such as
iterative development and the waterfall model, normally attempt to define a
long-running and static plan for the goals and needs of an application using
predictive methods. These models usually approach applications from the
bottom-up by working on the data first.

In contrast, agile development methods use an adaptive approach. Small teams
iteratively complete small units of a project. Before starting any iteration, the
team re-evaluates the priorities for the subtask, which could have changed in the
previous iteration. Agile developers design their applications from the top-down,
starting with the design, which may be as simple as an outline of the interface.

When an application is built using Agile methods, it is less likely to veer out of
control during the development cycle, due to the ongoing efforts of the team
which adjusts priorities. By spending less time creating functional specifications
and long-running schedules, developers using Agile methods can jumpstart an
application’s development.

MVC Architecture
MVC (Model View Controller) is an architecture structure for software
applications. An application is broken down into the following three components:

� models, for handling data and operational logic

� controllers, for handling the user interface and application logic

� views, for handling graphical user interface objects and presentation
logic. This structure leads to user requests being processed as follows:

� The browser on the client sends a request for a page to the controller
on the server.

� The controller retrieves the data it requires from the model in order to
respond to the request.

� The controller renders the page and sends it to the view.

D3.1 Content Adaptation Technology TALOS

D3.1_content_adaptation_technology_v1.doc 21 of 34

� The view sends the page back to the client for the browser to display.

� This process is depicted in Figure 2.

Figure 2 Processing a page request in an MVC architecture

Separating a software system into three components is helpful for the following
reasons: it

� improves scalability (the ability for an application to grow): if an
application experiences slow performance issues because database
access is slow, for example, the solution may most likely lie in the
hardware running the database without other components being
affected.

� makes maintenance easier because the components have a low
dependency on each other. Changes to one (e.g. to change
functionality) does not affect the operation of another.

� promotes software reuse by multiple views.

� makes for easy distribution of the application. Separation of code
inherently implies that each component could reside on a separate
machine.

‘Rails’ implements the concept that models, views, and controllers should be kept
separate by storing the code for each of these elements as separate files in
separate directories, as shown in Figure 3.

D3.1 Content Adaptation Technology TALOS

D3.1_content_adaptation_technology_v1.doc 22 of 34

Figure 3. The app(lication) subdirectory

Models
The model represents the application data and the rules for their management.
In ‘Rails’ the models are used primarily for the management of the rules
interaction with a table in the database. In most cases each model represents
one table of the database. The application logic is based on the various models
and their interactions.

Views
Views represent the application interface with the user. In ‘Rails’, views are
mainly HTML files with embedded code in the Ruby language that executes
commands for data display. The Views provide all pertinent data to the web
browser according to the selections of the user and the application requirements.

Controllers
The controllers connect the models with the views. In ‘Rails’, the controllers are
responsible for processing requests from the web browser, requesting data from
the models and transferring this data to the views for their display.

‘Rails’ Cycle
The following diagram shows the sequence of the responses to each request
posed by the user in the ‘Rails’ Architecture. Request A activates controller A,
while request B activates controller B and so on. Each controller call results in a
specific response to the request through a route that is selected in the
background of the architecture.

D3.1 Content Adaptation Technology TALOS

D3.1_content_adaptation_technology_v1.doc 23 of 34

Figure 3. Web Application in the ‘Rails’ Environment

Principal ‘Rails’ Modules
The ‘Rails’ environment includes the following set of modules for web
applications:

� Action Controller

� Action View

� Active Record

� Action Mailer

� Active Resource

� Railties

� Active Support

The installation and use of the various system modules clearly depends on the
requirements of the application. However, three are basic and are described
briefly below:

Action Controller
ActionController is the component that handles browser requests and
facilitates communication between the model and the view. The controllers in the
application will inherit from this class. It forms part of the ActionPack library, a
collection of ‘Rails’ components.

D3.1 Content Adaptation Technology TALOS

D3.1_content_adaptation_technology_v1.doc 24 of 34

Action View
ActionView is the component that handles the presentation of pages returned
to the client. Views inherit from this class, which is also part of the ActionPack
library.

Active Record

ActiveRecord is designed to handle all tasks of an application that relate to the
database, including:

� establishing a connection to the database server

� retrieving data from a table

� storing new data in the database

ActiveRecord is independent of the database and provides all the basic CRUD
(Create, Retrieve, Update, Delete) operations, complex data retrieval operations
and has the ability to relate data as it is required in a relational database.

Some additional features of ‘Rails’

• The ‘Rails’ environment supports several databases, MySQL, PostgreSQL,
SQLite, SQL Server, DB2, Oracle, thereby providing freedom to the
development engineer to select a database appropriate for a specific
application.

• The ‘Rails’ environment creates automatically a complete set of operations
(Scaffolding) for CRUD and the respective views of a table in the database.

• Allows extensive use of libraries for JavaScript and Ajax.

• Includes validation mechanisms for checking the correctness of the data
and error trapping.

• Provides templates for error detection during the test phase of the various
parts of the application and of its entity.

• Requires far less code compared to other development environments,
resulting in faster development and code maintenance and future
improvements.

Development Platform
The software tools used for the development of the web application include open
source or license free software for the operational systems Windows XP/Vista:

Ruby : Objective oriented language Open Source

‘Rails’ : Web-based applications environment Open Source

Aptana
Studio

: Web-based applications platform with
embedded RadRails for the development on
‘Rails’

License Free

PostgreSQL : Relational Data Base License Free

GoogleMaps
API

: Application Programming Interface to
integrate Google Maps (web mapping
service application)

License Free

Javascript : Scripting language used to obtain access to License Free

D3.1 Content Adaptation Technology TALOS

D3.1_content_adaptation_technology_v1.doc 25 of 34

objects within other applications

3.3 Description of the Web Application

The main parts of the web application are the following:

1. Publishing selected travel guides on the internet

2. Editing text and images of the travel guides

3. Addition of metadata to the text

The application includes a public part where the user can navigate to the
complete Travel Guide published or to specific parts and a part of limited access
where the user can edit the text and produce new metadata. The two sections
are described in detail in the following:

3.4 Public Part

The initial page of the web application is shown below:

Initially the table of contents of the Travel Guide, and refers to the City of
Dresden in the pilot case. The table of contents has a hierarchical view typical of
one seen in a printed book. For simplicity, only two levels of sections are
displayed initially. The user can navigate to the various sections and subsections
of the Guide by clicking on the specific title of the Table of Contents.

For example, on selecting the first section, namely 1. Dresden – die Stadt, the
following view is displayed:

D3.1 Content Adaptation Technology TALOS

D3.1_content_adaptation_technology_v1.doc 26 of 34

As all the text does not fit on the screen, scrolling is available (at the right hand
side of the screen). The user can select subsections down three levels for display.
At all times, the selected part is displayed at the top of the screen for ease of
reading, as shown in the following figure, where section 1.2.1 Die Altstadt was
selected from the Table of contents.

3.5 Limited Access Part

As shown in the previous figures, an authorized user can “Login” at any time to
edit the text. Authorized users are the author, the publisher or whoever has the
rights to enter this part of the application, provided he/she owns a valid pair of
username and password, which is issued by the administrator of the web

D3.1 Content Adaptation Technology TALOS

D3.1_content_adaptation_technology_v1.doc 27 of 34

application. By clicking on the “Login” prompt, shown on the top of any public
page, the user is requested to enter a valid name and password. Return to the
public pages is provided by clicking “Back”. Levels of access rights can be
specified, allowing permission for specific actions, if this is necessary at later
stages of development.

3.5.1 Editing

By clicking on the “Login” button, the user enters the part of the application
where editing is allowed. A similar window is displayed as before, where
navigation in the Travel Guide is driven through the Table of contents, however,
next to each section title (down to level three) of the text displayed, an icon to
edit [] is displayed, as shown in the figure that follows.

It is noted that at any time, the user can log-off by simply clicking on the
“Logout” prompt displayed at the top of each page.

D3.1 Content Adaptation Technology TALOS

D3.1_content_adaptation_technology_v1.doc 28 of 34

If, for example, some editing is required in section 1.1, the following window is
displayed, when the edit icon is clicked:

At the top of the page the following instruction is displayed: Double-click on any
of the following paragraphs to edit, is displayed in red. Double click on another
paragraph to continue editing.

When the mouse is on a certain paragraph, this paragraph is displayed within a
border as the one selected. By double-clicking on this paragraph and the editor is
displayed with functionalities similar to MS Word.

D3.1 Content Adaptation Technology TALOS

D3.1_content_adaptation_technology_v1.doc 29 of 34

Editing is straightforward and when a paragraph is completed, the user can
continue by double-clicking on another one. The editor disappears for the
previous paragraph and the changes are now displayed, while a new editor
opens for the new paragraph selected.

When the user no wishes to continue editing, the editor window will disappear if
the “Hide” prompt at the top of the editor window is clicked.

At the top of each paragraph there are two icons, one on the left and the other

on the right side. The first icon, [] is used to insert a paragraph between two
contiguous ones or to add a new paragraph at the top or bottom of the specific
section. When the user clicks on the Insert icon, an empty paragraph is created
prompting the user to “Double click on the paragraph to insert text”. This action
will make the editor window appear for editing, as described above.

D3.1 Content Adaptation Technology TALOS

D3.1_content_adaptation_technology_v1.doc 30 of 34

The second icon [] is for deleting the paragraph just below of the icon. A
confirmation is required:

Finally, all changes are stored in the database when the user clicks on the
“Update” button. Updating the text can be used as many times as the user
wishes. The window for editing will remain active while the user is transferred to
the published text by clicking on “Back”. These two options are displayed at the
top and bottom of the page, for convenience.

3.5.2 Metadata

An authorized user can add links to geographic information in the text which is
stored in the database which becomes available when the links are clicked. Such
links are displayed in the following figure.

D3.1 Content Adaptation Technology TALOS

D3.1_content_adaptation_technology_v1.doc 31 of 34

By clicking on “Paris”, for example, a window with the geographic coordinates of
the place is displayed:

D3.1 Content Adaptation Technology TALOS

D3.1_content_adaptation_technology_v1.doc 32 of 34

The user can change the coordinates, if necessary by clicking on the button
“Change Coordinates”. This option is available not only in all stored links, but
also when new geographical data is added, as it is shown in the next window.

To enter a new geographical data, the user must select the text by keeping the
mouse pressed down and dragging it on the text, “Paris”, in this case. With the
text selected and a right click, a pop-up window will show up prompting for
“Geo-coding”:

On selecting this, a new window appears with Geographical Coordinates of
“Paris” provided by Google Maps:

As the coordinates found by Google Maps may be not the correct ones, the user
can change them by clicking on the “Change Coordinates” button:

D3.1 Content Adaptation Technology TALOS

D3.1_content_adaptation_technology_v1.doc 33 of 34

More data can be inserted for the “New Search”, so when “France” is typed, a
“New Google Search” request is executed.

If these are the correct coordinates, then the user concurs by clicking on the
“Submit” Button, and this information is stored in the database for further use.
The “Reset” button brings back the original coordinates, and if no action is

D3.1 Content Adaptation Technology TALOS

D3.1_content_adaptation_technology_v1.doc 34 of 34

desired, the user can simply close the Google Maps window and return to the
travel guide.

To delete geographical data, a right click on the link prompts for deletion, as
shown below:

The data is deleted, following user confirmation:

New geographical data or their deletion can be done at any time even after the
text is published. In edit mode, a background mechanism keeps track of the
reference text of existing geographical data when changes are made in the text
and it finds their new position in the character strings in each paragraph.
Therefore the links referring to the selected words or part of text for each
geographical data are displayed correctly after the changes have been made.
Obviously, if the text or parts of the text that refer to this data is erased, the
relevant geographical data is lost forever.

3.6 Conclusions

The presented Web application presents a simple and universal to use means for
authoring rich content through a Browser-based Web interface.

Besides content it allows for adding metadata. As such it will be the interface for
adding any type of metadata including tasks as well.

