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Abstract. Tracking data has become a valuable resource for establishing speed 
profiles for road networks, i.e., travel-time maps. While methods to derive 
travel time maps from GPS tracking data sources, such as floating car data 
(FCD), are available, the critical aspect in this process is to obtain amounts of 
data that fully cover all geographic areas of interest. In this work, we introduce 
Wireless Positioning Systems (WPS) based on 802.11 networks (WiFi), as an 
additional technology to extend the number of available tracking data sources. 
Featuring increased ubiquity but lower accuracy than GPS, this technology has 
the potential to produce travel time maps comparable to GPS data sources. 
Specifically, we adapt and apply readily available algorithms for (a) WPS 
(centroid and fingerprinting) to derive position estimates, and (b) map matching 
to derive travel times. Further, we introduce map matching as a means to 
improve WPS accuracy. We present an extensive experimental evaluation on 
real data comparing our approach to GPS-based techniques. We demonstrate 
that the exploitation of WPS tracking data sources is feasible with existing tools 
and techniques. 
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1  Introduction 

Incorporating travel times into road network information, i.e., travel time maps, is 
an important prerequisite for a large number of spatiotemporal tasks. Examples 
include shortest path computation, traffic avoidance, emergency response, etc. 



Solutions typically rely on collected floating car data (FCD) that sample the overall 
traffic conditions [16, 5] in a given region. FCD capture temporal variations in 
achievable vehicle speeds throughout the road network. For example, speeds during 
the rush-hour are considerably lower than during night traffic. Then, in a post-
processing step termed map-matching [4, 19], tracking data is accurately related to the 
road network and travel times are extracted. It is critical that large amounts of FCD 
are available for long periods of time and geography, so that the extracted speed 
profiles are accurate. Currently, all methods use GPS for tracking the position of 
vehicles.  

1.1 The case for GPS vs. WPS 

While GPS is the most popular positioning technique, it has several drawbacks. 
First, it requires the use of specific hardware limiting the number of vehicles or users 
that can collect and provide tracking data. Second, there are occasions where GPS is 
inadequate (e.g., limited coverage, interference of high frequency electronic 
equipment). This is especially true for “urban canyons”, i.e., areas in urban 
environments where line-of-sight with the GPS satellites is obscured, leading to 
inaccurate readings or no coverage at all. As demonstrated by LaMarca et al. [11], the 
average availability of GPS in an urban environment is only 4.5% during a user’s 
daily schedule. In contrast, wireless networks, such as WiFi and GSM, are available 
on average 94.5% and 99.6% respectively. Third, the addition of extra integrated or 
autonomous GPS modules lead to increased power consumption, and thus limit the 
user’s mobility or application of GPS. 

These drawbacks of GPS have led to the rise of Wireless Positioning Systems 
(WPS), where the user location is estimated with the help of other, readily available 
wireless networks. As a technology, WPS delivers less accurate results (e.g., ~40m 
for WiFi/outdoors), but provides greater coverage characteristics (e.g., above 90% of 
a user’s time). Further, WPS can be integrated in practically any computing device 
that incorporates a wireless network interface, and with a negligible burden on the 
interface’s power consumption. So while WPS is less accurate than GPS, for typical 
everyday applications it can efficiently augment or even replace GPS. 

Lately, WPS capable devices and applications are becoming a common place for 
end users, with examples like the iPhone, Android, Google Gears, Mozilla Firefox 
3.1, etc. In addition, the integration of WPS in GPS and WiFi chipsets (e.g., SiRF, 
Broadcom, Texas Instruments) will result in a state where practically all mobile 
devices will have WPS capabilities. This argument is a fact, rather than a prediction, 
with great implications on spatiotemporal data management in general. In 
combination with the emerging usage of geolocation Web APIs (e.g., W3C 
Geolocation) we anticipate that in the near future there will be an abundance of 
readily available WPS positioning data.  

Consequently, the technical advance of WPS is leading to new challenges and 
potential gains for numerous applications, where the scale and amount of positioning 
data will require corresponding advances in algorithmic solutions. Further, 
repurposing this sort of data by accommodating their particularities (e.g., varying 



levels of accuracy, ubiquitous coverage, etc.) in order to extract hidden knowledge, 
will be another area of great interest. 

Our work is therefore extremely relevant in this newly established context, and 
applied to the specific issue of creating travel time maps. Currently, the creation of 
travel time maps from actual travel data is based solely on FCD. While this 
guarantees the use of position readings of high accuracy, it also limits the availability 
of such data for extended periods of time and geography. However, by successfully 
exploiting WPS, we would have access to data (a) whose size is several orders of 
magnitude greater, (b) temporally span bigger periods, and (c) extend to larger 
geographic areas. One could argue that WPS is only feasible in urban areas. While 
this observation is true, it actually strengthens our argument; urban areas are exactly 
where travel time maps are valuable resources for routing solutions.  

1.2 Contributions 

In this work, we advocate the use of WPS to complement and/or replace GPS 
tracking data sources to produce travel time maps. This increases the potential number 
of data providers and ultimately the quality of the resulting travel times. To the best of 
our knowledge, this is the first attempt of repurposing WPS tracking data to produce 
travel time maps. Our contributions are: 
� We adapt and extend the two most important classes of WPS algorithms (centroid 

and fingerprinting) for our setting (WiFi network, outdoors operation). 
� We experimentally evaluate the optimal parameters of the various classes of WPS 

algorithms and identify an optimal solution in terms of accuracy and coverage 
under realistic settings. 

� We adapt an online map-matching algorithm to WPS tracking data as a post-
processing step to improve WPS accuracy. 

� We adapt a global map-matching algorithm to extract travel time maps from 
historic WPS tracking data and compare the results to GPS derived travel time 
maps. 

� We demonstrate that for high sampling frequencies, WPS derived travel times are 
comparable to GPS in absolute terms. Further, even for low sampling frequencies, 
the results in terms of speed profiles (categories) are useful as well. 

The remainder of this paper is structured as follows. Section 2 introduces 
techniques for wireless positioning. Section 3 briefly introduces the map-matching 
algorithm used for deriving travel times from tracking data. Section 4 gives an 
experimental evaluation of WPS techniques and travel times derived from WPS data. 
Finally, Section 5 presents our conclusions and directions for future research. 

2 Wireless Positioning 

Wireless Positioning Systems (WPS) provide a position estimate based on the 
radio signals received at a given location (measurement), and a known radio map of 
the environment. In the case for 802.11 (WiFi) wireless networks, the measurement 



consists of a set of the visible access point ids (BSSID), and their corresponding 
received signal strength (RSS1). The measurement is then compared to the radio map 
through a distance metric, and a position estimate is calculated. 

Different wireless positioning algorithms exist, which imply different forms and 
means to create the radio maps, as well as distance metrics to provide an estimate. In 
all cases, the radio maps for a given region are produced by training data, typically 
collected through wardriving. Wardriving is the process of massively collecting 
geocoded RSS measurements when driving through a certain geographic area. For a 
given measurement period (e.g., 5sec), we perform a scan of the available WiFi 
networks in the environment (BSSID, RSS) and obtain the position of this scan 
through GPS. 

In this section, we present the outline of two classes of WPS algorithms we 
adapted and implemented for our experiments, i.e., centroid and fingerprinting. For 
both classes, numerous approaches and variations exist, depending on the wireless 
network (e.g., [13, 12, 17, 7, 18]) and environment (e.g., indoors/outdoors [10, 2, 3, 
8]). We have either adopted these variations as is, or properly adapted and extended 
them to suit our case. 

2.1 Centroid 

Centroid is the simplest and the fastest method for wireless positioning. In 
centroid, the radio map consists of a set of the available APs and their positions, i.e., 
<BSSID, X, Y>. Consequently, centroid depends on having the true locations of the 
AP positions. Since this information is practically not available, nor feasible to 
produce, we must create the radio map from the training data, essentially estimating 
the position of the APs. Therefore, for each AP in the training data, we find all the 
positions it was visible, and estimate the AP’s position as the arithmetic mean of these 
coordinates. Having established the radio map, a position estimate is provided in a 
similar manner. Given a measurement from the environment where certain APs are 
visible, we calculate the arithmetic mean of their coordinates, as provided by the radio 
map. 

In order to improve accuracy when creating the radio map and/or calculating an 
estimate, we adopted weighted centroid from [6] and proposed two new heuristics: k-
max and thresholds. Specifically: 
� Weighted. The simple arithmetic mean is substituted by a weighted arithmetic 

mean, where the weight is based on the RSS. 
� K-max. We apply the arithmetic mean on only the k APs with the lowest RSS (low 

RSS values correspond to strong received signal). 
� Thresholds. We define three thresholds t1≤t2≤t3 which split the RSS space in four 

regions. If there are APs which fall in the first threshold (RSS≤t1), then we use 
only them in the arithmetic mean and ignore the rest. If there no APs in the first 
threshold, we use the ones in the second (t1≤RSS≤t2), and so forth. In case there are 
APs only in the last threshold (t3≤RSS), then the algorithm does not provide an 
estimate since we consider the measurement to provide highly inaccurate readings. 

                                                        
1 Note that we always refer to the absolute value of RSS. 



Consequently, for centroid, there are a total of 16 different combinations of 
techniques to create the radio map and to provide an estimate: 4 to create the radio 
map, and 4 to provide an estimate. A specific centroid technique will be denoted as 
centroid <radio map, estimation>, where radio map and estimation can be one of the 
following: arithmetic mean (am), weighted (w), k-max (k=n), and thresholds (t1-t2-t3). 
For example, centroid <k=2, 60-70-80>, means that the radio map was built with the 
k-max technique with k=2, and the estimation is provided with the thresholds 
technique with t1=60, t2=70, and t3=80. 

2.2 Fingerprinting 

Fingerprinting assumes that the APs and associated RSS observed at a particular 
location are stable over time. Consequently, a measurement at a given location, i.e., 
the list of visible APs and RSS, can be considered as the unique fingerprint of that 
location. Thus, in fingerprinting, the training data themselves comprise the radio map. 

To estimate the position, the algorithm calculates the Euclidean distance in the 
signal strength space between the current fingerprint and all available fingerprints in 
the radio map that contain the same APs. It then selects the k-nearest fingerprints in 
terms of distance, and returns as an estimate the arithmetic mean of their coordinates. 
This comparison is possible only if the current fingerprint and the fingerprints in the 
radio map contain exactly the same APs. Otherwise, calculating their distance in the 
Euclidean space is not possible. 

However, in realistic conditions the current fingerprint may not contain exactly the 
same APs with the ones in the radio map. For example, some of the APs may have 
been turned off or removed, new APs may have been deployed, or the network 
interface may not provide APs with an RSS below a given threshold (typical behavior 
of Windows 802.11 hardware drivers).  

To account for this situation, we calculate the distance between the current 
fingerprint and the ones in the radio map based on a subset of common APs. In 
particular, we extended the algorithm in [6] so that the subset is defined by two 
parameters: 
� l: We compare the current fingerprint with fingerprints that contain at most l less 

APs. For example, suppose the WiFi scan <(AP1, RSS1), (AP2, RSS2), (AP3, 
RSS3)>. For l=1, a fingerprint <xa, ya, (AP1, RSS1), (AP2, RSS2)> would be 
included in the position estimation, in contrast with <xb, yb, (AP2, RSS2)> which 
would be ignored since there are two missing APs. 

� m: We compare the current fingerprint with fingerprints that contain at most m 
more APs. For example, suppose the WiFi scan <AP1, RSS1>. For m=1, the 
fingerprint <xa, ya, (AP1, RSS1), (AP2, RSS2), (AP3, RSS3)> would be excluded 
from the estimation due to the two extra APs. 
Consequently, fingerprinting is modified as follows. The algorithm calculates the 

Euclidean distance in the signal strength space between the current fingerprint and all 
fingerprints in the radio map that contain at most l less and m more APs. It then 
selects the k-nearest fingerprints in terms of distance in the signal space, and returns 
as an estimate the arithmetic mean of their coordinates. As a result, there are many 
instances of the fingerprinting algorithm based on different parameters of k, l, and m. 



During the rest of the paper, we will use the notation fingerprinting <k, l, m> to 
denote a specific instance of the fingerprinting algorithm. 

3 Map Matching 

Deriving travel times from tracking data implies the alignment of the tracking data 
with a respective trajectory in the road network, i.e., finding the actual roads the 
vehicle has traversed. Now, provided that the tracking data is precise, this task would 
be simple. However, tracking data is obtained by sampling a vehicle’s movement, 
typically with GPS and in our case with WPS. Unfortunately, both GPS and WPS are 
not precise due to the measurement error caused by the limited positioning accuracy, 
and the sampling error caused by the sampling rate, i.e., not knowing where the 
moving object was in between position samples [14]. Therefore, a processing step is 
needed that matches tracking data to the road network. This technique is commonly 
referred to as map matching. 

 
Fig. 1.  Map-Matching example.  

  

Fig. 2. Sampling error and measurement error.  

To illustrate these errors and the map-matching problem in general, Fig.1 gives two 
examples of measured positions and the possible trajectory the vehicle could have 
taken. Fig. 1a shows the interpolated path in between position samples A and B and 



the actual path with respect to the road segment. Further, as evident in Fig.1b, the 
positioning error becomes significant when facing several parallel roads close by. 
Specifically, in the case of WPS (Fig.2), the measurement error might grow quite 
large. This significantly increases the challenge for proper map-matching, since with a 
large measurement error, one is presented many alternative paths in the road network 
to map the sampled movement to. Thus, we expect that at least minimizing the 
sampling error by using high sampling rates will prove to be important.  

3.1 Theoretical Considerations 

Most map-matching algorithms are tailored towards mapping current positions 
onto a vector representation of a road network. Onboard systems for vehicle 
navigation utilize, besides continuous positioning, dead reckoning to minimize the 
positioning error and to produce accurate positions that can be easily matched to a 
road map. However, for the purpose of processing tracking data collected over a 
period of time, the entire trajectory, given as a sequence of historic position samples, 
needs to be mapped.  

The algorithm we utilize in this work is the global map-matching algorithm of [4, 
19], which employs the Fréchet distance measure for curves [1]. A popular illustration 
of the Fréchet distance is the following. Suppose a person is walking his dog, the 
person is walking on the one curve and the dog on the other. Both are allowed to 
control their speed but they are not allowed to go backwards. The Fréchet distance of 
the curves is the minimal length of a leash that is necessary for both to walk the 
curves from beginning to end. Using this distance measure, our global map-matching 
algorithm tries to match the tracking data geometry to a respective path in the road 
network by comparing it to the shapes of all possible paths in the road network. 
Although conceptually quite an elaborate task, this can be accomplished in 
O(mnlogmn) time, with m being total number of nodes and edges of the road network 
and n the size of the tracking data to be matched [4].  

The global map-matching algorithm is therefore a shape-matching algorithm that 
matches one curve, the tracking data trajectory, to another curve, the road network 
path that most closely resembles the tracking trajectory. As such, the algorithm is 
predestined for matching historic data.  

Consider now the online map matching case, in which tracking data is matched as 
it is collected, i.e., in real time. Here, we apply the same global map matching 
algorithm, but instead of exploiting the complete trajectory (which is not known), we 
take advantage of the available historic data, i.e., the tracking data available so far. 
Experimentation showed that typically a trajectory consisting of 10 position samples 
collected with a sampling rate of 30s can be matched with the same accuracy as 
longer trajectories, i.e., 10 position samples represent a reasonably large enough curve 
for the global map-matching algorithm to produce a good quality match when applied 
to the online case. Hence, to perform online map matching, we apply the global map 
matching algorithm on the trajectory formed by the current position estimate and the 9 
last position estimates. 



3.2 Deriving Travel Times 

Having mapped the tracking data to the road network, travel times are derived by 
mapping the travel times contained in the tracking data to the respective portions of 
the road network. The map-matching algorithm performs essentially shape matching 
and tries to find a path in the road network that most closely resembles the trajectory, 
i.e., the tracking data (cf. dotted line in Fig. 4). In the process, it maps all position 
samples (circles in Fig. 4) to the road network and all nodes along the corresponding 
path to the tracking data trajectory. Since the original tracking data contained the 
timestamp they were received, this information is transferred to the map-matched 
tracking data along the road network. The former can be seen as an effort to 
rediscover where on the road network the position samples would have been 
originally recorded. As such, these mappings are the ideal means for assigning travel 
times to the respective road network edges. Overall, the approach we employ is to 
uniformly map the time recorded between two consecutive position samples (e.g., ti+1 
- ti) in Figure 4, to the respective portions of the road network. 

 

Fig. 3. Distance and travel time assignment.  

4 Experimental Evaluation 

The primary scope of our experimental evaluation is to establish the suitability of 
WPS data as a source to provide travel times. First, to provide a complete 
examination of the relevant technologies and potential uses, we provide an evaluation 
of WPS accuracy and coverage and also introduce map matching as a means to 
improve WPS accuracy. 

4.1 Experimental setup 

The experimentation was carried out in the Zografou neighborhood of Athens, 
Greece. The area was selected (i) due its to geographical characteristics (mix of flat 
areas and hills), (ii) varying levels of WiFi AP density (0-15 APs/m2), (iii) typical 
urban structure with a mix of shops and residential areas, and (iv) fluctuating traffic. 



4.1.1 Data Collection 
Data was collected through wardriving over a period of two months in an area 

covering approximately 100,000m2. For data collection typical road speeds and 
driving habits were maintained. Driving speeds varied from 0kph (stationary for more 
than 5mins) to 70kph. Fig. 5 shows a respective map of the Zografou area and the 
sampled locations on the road network where at least one WiFi AP was visible. 

Our data set consists of records of the form <tid, x, y, t, AP>, where tid is the 
unique id of a trajectory, x and y are the GPS coordinates, t is the timestamp of the 
measurement, and AP is a list of the APs (BSSID) and their respective received signal 
strength (RSS). The sampling rate during data collection (i.e., every when a 
measurement is taken from the environment) was 5sec. In total, we collected roughly 
200MBs of data, and we divided them (70%-30%) into two separate sets: (a) the 
training data, which were used to create the maps for the WPS techniques, and (b) the 
testing data, which were used to assess the WPS accuracy and to calculate travel 
times. 

Concerning the chosen wardriving approach, instead of multiple passes from each 
road segment (which may reveal more APs, produce more samples for an AP, etc.), 
we performed at most one pass. This implies that the collected data set may be less 
complete than it could be, but resembles a realistic large scale mapping effort to 
create the radio map of any given region. 

The equipment that was used comprised an Intel Core Duo laptop with a single 
802.11a/b/g NIC and two Bluetooth GPS devices, all situated in the passenger 
compartment. We used Kismet [9] with a set of custom add-ons to extract geocoded 
WiFi measurements. All wardriving logs were later offloaded to a PostGIS database. 
Our WPS algorithms (centroid, fingerprinting) were developed in C/C++ and the 
map-matching algorithm was implemented in Java. Certain auxiliary 
processing/visualization tools were developed in PHP, Python, and Java. Accurate 
map data for the road network of Zografou were provided by Eratosthenis S.A. The 
experiments were executed by three Windows 2000 servers over a period of two 
weeks. Visualization of the results was performed with QGIS [15]. 



 
Fig. 4. Zografou map and WiFi AP locations. 

4.1.2 WPS Feasibility 
The following interesting observations can be made with respect to the data. First, 

the total number of unique APs discovered was 2,184, and on average we observed 5 
APs for each sampled location. Considering the covered geographic area, this yields 
2.1 APs per 100m2. Second, in most cases when WiFi was not available, then GPS 
was not available as well (e.g., under a bridge, near a large building). Third, almost all 
APs were available 24/7. Overall, these facts confirm the increased penetration of 
WiFi networks in urban environments and constitute a foundation for the proliferation 
of WiFi-based WPS as a ubiquitous and dependable alternative to GPS.  

4.2 WPS Positioning Accuracy 

4.2.1 WPS accuracy and coverage 
The following experimentation evaluates WPS techniques in terms of accuracy and 

coverage. In particular, we used our training data to create the radio maps and the 
testing data to calculate the position estimates based on these maps. We experimented 
with all permutations of means described in Section 2. For each point in the testing 
data, the position estimate provided by each WPS algorithm for specific parameter 
settings is compared to the respective GPS measurement taken (ground truth). 

Table 1 shows the results concerning accuracy using a ranking based on the 
average error of the WPS estimates. In addition, for each result its respective coverage 
(i.e., the percent of times the technique can provide an answer) is stated. For each 
class of WPS algorithms (centroid, fingerprinting) the best three accuracy achieving 
parameter settings are presented. What can be observed is that given the right 
parameters, fingerprinting achieves the best positioning accuracy (25.24m). However, 
the results overall only differ slightly. What is of interest is the respective coverage 
that can be achieved with each method. For example, the best performing 



fingerprinting method has a coverage of 56%, i.e., the technique cannot provide a 
position estimate 44% of the time. This behavior is caused by the WPS algorithms 
themselves and by our wardriving approach to collect training data. For example, 
centroid<k=1, 60-80-90> provides an estimate based only on APs with RSS below 60. 
The estimate will be more accurate because the required RSS threshold is low, but 
since this is also highly selective, there are many instances where RSS below 60 is not 
available. 

Table 1. WPS accuracy compared to GPS 

 Average Error (m) Coverage (%) 
Centroid <k=1, 60-70-80> 26.61 74 
Centroid <k=1, 65-80-80> 26.65 82 
Centroid <k=1, 75-85-90> 26.82 64 
Fingerprinting <6-1-5> 25.24 56 
Fingerprinting <6-1-4> 26.40 54 
Fingerprinting <6-1-6> 26.57 56 

 
Table 2 ranks WPS techniques based on their coverage values. As expected, the 

techniques producing the best coverage underperform in terms of average error. To 
design an actual wireless positioning system one needs to consider this trade-off 
between accuracy and coverage, i.e., is providing a more accurate estimate better than 
always providing a crude estimate?  

Table 2. WPS coverage 

 Average Error (m) Coverage (%) 
Centroid <k=1, weighted> 35.52 94 
Centroid <k=1, 70-80-85> 47.11 93 
Centroid <k=1, 65-75-80> 47.15 92 
Fingerprinting <6-2-6> 36.45 82 
Fingerprinting <2-4-6> 51.53 81 
Fingerprinting <6-6-1> 48.93 78 

One conclusion to the above question is to provide a hybrid WPS technique for 
centroid and fingerprinting. In particular, we obtain an estimate from the best 
performing technique in terms of accuracy, but should the said technique not be 
available (coverage), we obtain an estimate from the technique with the best 
coverage. These hybrid WPS techniques have high coverage (> 96%) with an 
acceptable increase in average error (cf. Table 3). 

Table 3. Average error and coverage of the hybrid WPS techniques 

 Average Error (m) Coverage (%) 
Hybrid Centroid 32.77 99 
Hybrid Fingerprinting 28.40 96 

Unless stated otherwise, hybrid WPS techniques will be used through the rest of 
our experiments, denoted as WPS-C and WPS-F for hybrid centroid and hybrid 
fingerprinting respectively. 



4.2.2 Map Matching to Improve WPS Accuracy 
Map-matching is known as a technique to relate tracking data to a map dataset. 

One can also see it as a method for imposing geometric constraints (shapes of paths in 
the road network) to tracking data. As such, this technique might be a viable means to 
“correct” WPS data and improve its accuracy. In this experiment, we utilize two map-
matching algorithms, a simple one (called naive) that maps position samples to the 
closest point on the road network and the online algorithm presented in Section 4.2, 
which exploits shape information. To compare the various approaches in terms of 
accuracy, we calculated the average error and standard deviation for the complete 
WPS dataset with respect to the GPS measurements.  

The results are given in Table 4 and confirm the findings in the relevant literature, 
with fingerprinting providing more accurate results than centroid. However, note that 
in both cases the average error is roughly 30m. Further, while the naïve map-matching 
algorithm only marginally reduces the average error (~1m), the shape-based map-
matching algorithm reduces the average error by 37% (WPS-C) and 25% (WPS-F). 
This happens, because in contrast to a naïve map-matching approach, the shape-based 
algorithm exploits past WPS estimates to produce a trajectory that best fits the road 
network. Hence, an extremely important side-effect of proper map-matching, 
stemming from its inherent robustness towards inaccurate data, is the improvement of 
the accuracy provided by WPS. Combining WPS with map-matching reduces the 
average error of WPS (~20m) very close to the average error of GPS in urban 
environments (5-15m). This observation clearly opens the room for more research and 
experimentation, since in the WPS literature GPS is always considered as the ground 
truth for calculating the average error. Obviously, this is something needed to be 
questioned given our findings. Our future work and current experimentation is 
focused on exploiting GNSS available in Greece of greater accuracy (<1m), such as 
Galileo CS [20] and HEPOS [21]. 

Table 4. WPS average error and standard deviation. 

 Avg. 
Error 
(m) 

Stdev. 
(m) 

Avg. 
Error with 
naïve mm 

(m) 

Stdev. 
with naïve 

mm 
(m) 

Avg. 
Error with 

mm 
(m) 

Stdev. with 
mm 
(m) 

WPS-C 32.77 49.80 31.74 48.34 20.47 19.74 
WPS-F 28.40 42.48 28.36 41.68 21.15 22.16 

Moreover, we performed a set of experiments to assess the impact of the data 
collection speed, and AP density, towards WPS accuracy. In particular, to assess the 
impact of the data collection speed (i.e. frequency of collecting measurements from 
the environment), we removed records from the collected data to simulate frequencies 
ranging from 2Hz to 0,2Hz (Fig.5a). Further, we sampled our entire data set to 
randomly remove APs in order to simulate densities up to only 25% of the original 
one (Fig.5b). Our results illustrate that centroid is the most robust technique, 
maintaining an acceptable average error at all times. 
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Fig. 5. Average error dependence from (a) measurement period and (b) AP density. 

4.3 Extracting travel-time maps 

To establish the feasibility of using WPS data to derive travel times, we compared 
the travel times produced from GPS data to the ones produced from WPS data for the 
same trajectories. The format of the collected testing data was <tid, x, y, t, AP>, 
where tid the trajectory id, x and y the GPS coordinates, t the timestamp of the 
measurement, and AP the WiFi-related measurements, i.e., AP BSSIDs and RSS. For 
the testing data, WPS-C and WPS-F were used to produce WPS estimates, resulting in 
trajectory data of the form of <tid, x, y, t, xc, yc, xf, yf>, where xc, yc, xf, and yf are 
the coordinates produced by the centroid and fingerprinting algorithms respectively. 
For the three types of trajectory data, GPS, WPS-C, and WPS-F, global map-
matching was applied, and using the approach detailed in Section 3, the respective 
travel times were derived for each case. Consequently, for each road segment in our 
network, we established three different travel time estimates, (i) GPS, (ii) WPS-C and 
(iii) WPS-F. Versions of the travel time dataset were produced for sampling rates of 
5, 10, 20, and 30secs.  

4.3.1 Qualitative evaluation 
In order to compare the trajectories produced by GPS and WPS position data, we 

will define the measures of recall and precision. Let }{gGi  , be the set of vertices 
produced by the map-matching algorithm on GPS data, for trajectory i. Also, let 

}{wWi   be the set of vertices produced by the map matching algorithm on WPS data 
for the same trajectory. The intersection ii WG   contains the vertices the two sets 
have in common. Recall R and precision P can be defined as follows:  

i

ii
i G

WG
R


          

i

ii

W
WG

P


  (1) 

R indicates the fraction of road segments covered by GPS trajectories that is also 
covered by WPS. Ideally, R should be equal to 1, i.e., WPS returns all the road 
segments GPS does (but possibly more). Further, P indicates the fraction of road 



segments covered by WPS trajectories that is also covered by GPS. Again, we want P 
to be equal to 1, i.e., WPS does not produce road segments not produced by GPS. 
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Fig. 6. Recall and precision for the WPS derived trajectories in our entire data set. 

In Fig.6, the values of recall and precision for our entire data set using varying 
sampling rates are shown. Common to all cases, recall is high, close to 100%. Notice 
that recall is optimal for a sampling rate of 10s while precision is best for a sampling 
rate of 30s. This was expected, as for low sampling rates, the sampling error 
dominates the measurement error in the map matching process. Thus, both WPS and 
GPS produce practically the same trajectories. 

Fig.7 illustrates the above by giving a sample trajectory that accurately represents 
our findings for the entire data set. Fig.7(a) shows raw GPS tracking data while 
Fig.7(b) shows the WPS estimates derived by the WPS-C technique. Notice that 
although the ‘noise’ in WPS estimates is apparent (with several outliers as well), the 
trajectory can easily be distinguished. Fig.7(c),(d) show the produced trajectories after 
applying our map matching algorithm using a sampling rate of 30s. Fig. 7(e),(f) show 
details of the trajectory, highlighting specific map-matching cases. 

  
(a) GPS data (b) Centroid WPS data 



  
(c) map-matching GPS data (d) map-matching WPS data 

  
(e) detail view of (c) (f) detail view of (d) 

Fig. 7. Sample trajectory. 

4.3.2 Quantitative Evaluation 
Having established how trajectories produced by WPS fare in comparison to GPS, 

in the following, we compare the respective travel times derived from these 
approaches. Given the set of links for which WPS and GPS derived travel times are 
available, we calculated the average error of WPS compared to GPS derived travel 
times, as shown in Fig.8. What can be readily observed is that the optimal sampling 
period is 10s, with no real difference between the two WPS techniques. For a period 
of 30s, the errors are 80.3% (WPS-C) and 125.4% (WPS-F). This could be interpreted 
as a serious problem for map matching based on WPS data for lower sampling 
frequencies, since most travel time databases are calculated from fleet management 
logs with sampling periods of 20-30s.  
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Fig. 8. Average error of WPS derived travel times compared to GPS derived travel times. 

However, for the creation of dynamic road network profiles, travel times are used 
to classify road network links. For example, suppose that a road category is defined as 
including speeds ranging from 10-20kph. Here two road links with respective travel 
times of 10.5 and 19.5kph will be subsumed under the same category. This 
quantization is beneficial, because it results to lower storage requirements, faster 
route calculation, and routes of similar quality. 

Fig. 9. Speed profile matches for GPS and WPS derived travel times, for various sampling 
periods: (a) 5sec, (b) 10sec, (c) 20sec, and (d) 30sec. 

 
We experimented with such quantization in travel time speeds and introduced for 

our experiments five road categories characterized by the following speeds (in kph): 
[0-10), [0-20), [20-30), [40-50), [50,∞). We classified all road links based on GPS and 
WPS data, and for various sampling frequencies. Further, for each road link in our 
network, we compared the classification produced from GPS, WPS-C, and WPS-F. 
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Our results are shown in Fig. 9. For example, in Fig. 9(a), 75% of the road links are 
classified under the same category for WPS-C, compared to GPS. For WPS-F, this 
number is close to 90%. From Fig.9, we can also observe that for sampling rates of 5s 
and 10s, at least one of the two WPS techniques derives the same road categories for 
90% of the road links. As the sampling rate decreases, this percentage is reduced to 
roughly 60%, with additional 25% of the road links classified to one category higher 
or lower. Therefore, we can conclude that for higher sampling rates, WPS produces 
very accurate travel times which are indeed comparable to GPS. For lower sampling 
rates (30s) the results are encouraging, since at least 80% of the derived travel times 
fall within the same or a directly neighboring category.  

What follows in Fig.10 is the actual link classification based on GPS and WPS. 
Fig.10 shows the percentage of road links that fall in one of our five categories for 
GPS, WPS-C and WPS-F. It is evident that for small and high sampling rates alike, a 
WPS derived classification is very similar to a GPS classification. 
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Fig. 10. Road segment classification for (a) 5sec and (b) 30sec 

5 Conclusions and Future Work 

We have evaluated the use of WPS data as an alternative data source for extracting 
travel times for road networks. We adapted and evaluated various classes of the 
centroid and fingerprinting WPS algorithms. Further, we applied map matching as a 
post processing filter to improve WPS accuracy and demonstrating significant gains. 
In addition, we extracted travel times from GPS and WPS data with a map-matching 
algorithm. Our evaluation demonstrated that for measurement periods up to 10sec, the 
produced travel times are practically identical to the ones derived from GPS data. 
Further, when applying a typical speed profile classification on travel times, even for 
sampling rates of up to 30sec, the produced travel times are still of respectable 
quality. Finally, we showed that through our analysis of WPS data, the distribution of 
road segments to speed profiles can be accurately discovered. 

Our ongoing work evolves around further exploring and manifesting the benefit 
and potential uses of huge amounts of crowd-sourced WPS data. In this respect, our 
efforts are focused on three fronts. First, improve the accuracy of WPS techniques by 
integrating map matching into the WPS algorithms. Second, explore different uses for 
WPS data, such as routing (by fully replacing GPS), and automatic road network 



construction. Third, we aim to model and accommodate the inherent inaccuracy of 
wireless positioning data sources into spatiotemporal tasks and algorithms. 
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