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Abstract

In many application fields such as disaster management or personal planning,
efficient mobile services should capture users' context in order to provide them
with the most appropriate information at a given time. Situation-based services
aim toward this direction. They go beyond location-based services as they take a
user's current situation into account. Situations include user profiles together
with dimensions such as their location, current activity, or type of connectivity.
They can be derived from direct observations or from electronic calendars and are
defined as valid during a time interval. Depending on the application but also
within the same application the time interval of interest can be of various
granularities. It is crucial to handle time granularity efficiently and in a well-
defined manner. In this paper, we investigate the handling of various granularities
for situations and situation sequences through, in particular, coarsening methods.
We propose an algorithm that we tested in concrete projects and we illustrate its
use in a tourism application.
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. INTRODUCTION temporal database community and we extend them in order to
use them in the context of situation-based services.

Situation-based services have emerQEd as services that Cah ear|y work, the tempora| database Community has focused
ture (mobile) users’ dynamic profiles in order to send thegh defining and reasoning on time intervals [All84]. Tempora
appropriate information. Situations are defined over Vﬂ?iogranularity was introduced in the early 90’s [WJL91] and has
dimensions such as location, current activity, or type @gceived notable attention from the temporal database com-
connectivity. They can be derived from direct observati@ys munity who mostly described temporal granularity handling
sensing context), from electronic calendars, or estimiatekt  in a formal manner (see for instance [Euz95], [MGB)],
ing at either individual or group behavior. They are defined FDELSO00], [CCO02], [CFP04], [GLZ04]). Context handling
valid during a time interval. Depending on the applicatian b jn mobile environments started receiving attention in te |
also within the same application the time interval of ing¢reggs [ADB*99] and many conceptual approaches have been
can be of various granularities. proposed lately in the context of mobile applications (see

Handling temporal granularity in situation-based serwise for instance [BDO7] for a comprehensive survey), although
of crucial importance in order to deliver appropriate imia- they usually focus on spatial, location-based aspectsiaa
tion to users and match their information needs as accyrasel context was introduced in various areas such as collaberati
possible. The need to handle granularity generally arisesnw work (see e.g., [DSD06], which concentrates on fuzzy inter-
different sources of situational information are being dusésals) and mobile applications as an inherent concept [§ch05
and need to be combined and possibly compared. Most clihe situation model introduced in [MPVWO04] is simple yet
rent situation-based services— e.g., navigation seryiegsr powerful to capture users’ context at some granularityllbue
schedule assistants, or weather forecasts — integrat€esutioes not consider different granularity combinations capni
that are based on different temporal granularities. Combin from different sources. To the best of our knowledge, the
this information is sometimes necessary, for instance to g#oblem tackled in this paper has not been investigated so
an integrated view on the overall situation of a user or far.
user group. In the latter case, we can take the example ofThis paper is organized as follows. Section Il gives the con-
a disaster management system that needs to alert all ge@ts necessary to tackle this problem. Section I estaes
users who are in a particular situation (location and agivi the relationship between temporal granularity and sioumeti
Furthermore, many services such as Personal Informatiamd presents two coarsening procedures, a naive one and a
Management (PIM) services or transportation services retyore elaborate one. Section V presents the architecturarof o
on a functionality to compare precise schedules with roughdystem and illustrates our approach taking examples fr@em th
defined plans. This applies, e.g., when one wants to knewea of tourist information services. Finally, Section Vaas
whether an actual observation matches an intended coursey@f conclusions.
events, or whether certain predictions meet the expeowtd
a user (see for instance [MPVWO05] for more details). Last but Il. MAIN CONCEPTS
not least, in order to keep a user up-to-date with informmatio This section introduces the main concepts used in this paper
of different levels of detail (with respect to both contentia namely our situation model with an extended list of opesator
temporal precision), one needs to switch between differemid temporal concepts such as granularity and granule. Part
temporal granularities. of the basic terminology can be found in [BDES].

The situation model that we take as a reference is defined ) ) )
on many dimensions and each dimension is defined orf‘a Situations and Situation Sequences
hierarchy (for instance, if a user is in the Plaka district in The notion of user context is usually understood as a
Athens, Greece, she will be in “the Plaka-district/Athensnapshot of his or her environment at a given time based on
downtown/Greece/Southern Europe/...” and so on). This r@sw values (e.g., temperature or location). The situatiodeh
useful to target users at different levels by rolling up iproposed in [MPVWO04] abstracts from such values and defines
the hierarchy (e.g., all inhabitants of Athens in a disastersituation as a collection of characteristic values (simio
management application). With the time being one dimensiaattribute values) valid during a time interval.
one could assume that the same mechanism would apply to thBefinition 2.1 (situation):A situation is a tuple:s =
temporal characteristics. However, time plays a partroidie (¢, ty, SC), with t,: beginning of the validity periodfy:
as it is a parameter of the situation concept and needs $peeiad of the validity periodSC = {Ci.ci,...,Cy.c,}, With
processing when situations are to be combined and mergé€d, ..., C,, characteristics and.cy, . .., C,.c, characteristic
In other words, tackling temporal granularity in this coditis  values.
different from tackling other types of granularity such he t To capture situations at various levels of abstractionr-cha
spatial granularity (which can be handled by a simple modatteristics are defined along dimensions and are instances
that handles hierarchies, such as an object-oriented nodef ontologies. Operators on characteristics and chaiatter
In this paper, we investigate the problem of handling vasiowalues are introduced as technical tools for reasoning on
temporal granularities for situations and situation seges. situations and areancestor: (¢;,¢;) — ¢y, Which returns
In our approach, we take as a basis existing concepts from the smallest common ancestor of two characteristics values



most-specific-set: (¢s;, csj) — c¢s; which finds the most  Since the algorithm presented later relies on the set-based
specific set of characteristic values common to two sets @perations we give their definitions hereafter (see Fig.rl fo
characteristic values, andompare-set: (¢4, cs;) — [0,1], an illustration).
which gives the similarity between two sets of charactiedst Definition 2.3 (Difference)\: S x S — S): The difference
(using a similarity metric on the subsume paths of the dof two situation sequences andS; is the situation sequence
mensions). In the following, to make it shorter we sometimekescribing the situational knowledge containedSinthat do
denotefeature a characteristic value angattern a list of not appear inS;. We write Sp \ S.
characteristic values. We also use the tetimensionas a Definition 2.4 (Intersectionn: S x S — S): The intersec-
short version of adimension structurewhich represents the tion of two situation sequence$S; and S, is the situation
hierarchy of attributes along one dimension. sequence describing the situational knowledge contam#g i
One of the key notions of the situation model is that cds well as inS,. Thus an intersection describes the knowledge
situation sequences situation sequence describes a sequensbared by two sequences. We wrieN Ss.
of states over time. It can be used to describe the process obefinition 2.5 (Union:U: S x & — §): The union of two
writing a paper, or the sequence of transportation meansdmpatible situation sequencés U S> is the situation se-
used on a particular day in order to get from home to workuence describing the combined situational knowledge tf bo
Situation sequences are defined as follows. sequences; and S,. We write S; U .S5.
Definition 2.2 (situation sequenceft situation sequence
(S, <:) is a well-ordered set of not-overlapping situations.
The concept of situation sequences can be used by aplemporal statements can be made using different precisions
plication designers to anticipate upcoming situations smd Differences in the accuracy could stem, for instance, from
compare the system knowledge against the users curréiccuracy of clocks. They result from the size and exact
situation to find possible discrepancy. keeping of measurement intervals. This accuracy or these
Situation setsIn contrast to situation sequences, simpl#accuracies play a major role when it comes to modeling
sets of situationsre not restricted w.r.t. the compatibility ofand interpreting situational information. Time pointsedso
the situations contained. Situations from a set can overl&pecify situations, cannot be considered exact in an atesolu
they can express contradictory knowledge, they can exprég§ise. They can only be considered exact on a certain scale
knowledge, which is partly shared by other situations, artgee Fig. 2 in a PIM application). This scale can be defined
so forth; whereas situations belonging to the same situatiBy tolerances which define the granularity of the time points
sequence can not. Temporal indeterminacylemporal indeterminacy can have
Every situation sequence can be represented as a seflifferentreasons, which can be grouped into two categdijes
situations. And if a set isonsistent which means that all vagueness due to imprecise measurement and (ii) inaccafacy
situations contained are pairwise compatible, this sethmzan data due to the loss of information resulting from a conwersi
used to produce a situation sequence out of it by unifying @M a higher to a lower granularity. Many approaches to
elements (seainion operator below). Except for the emptymodel time concepts using different granularities or units
sequence there always is an infinite number of differefifne have been proposed (see related work in the introchjctio
consistent sets that can produce the same sequence. Howé\g granularity-related concepts and their definitionst tha
there always is one smallest set of one-dimensional situsiti @€ Widely accepted and commonly used in the temporal
that corresponds to every sequence. This set is calieinal database and temporal reasoning communities (see fonaesta
producing sebf a situation sequence. Because both a situatif@DE 98] or [DELSO00]) are given below.
sequence and its minimal producing set are equivalent w.r.t Time domain.A time domainis defined as a pai(7’; <
their situational knowledge, often the set can be usedadsté ) WhereT' is a non-empty set of time instants andis a

the sequence itself when manipulating situational infdioma  total order onT". The time domain represents the primitive

One can distinguish between dense and discrete time domains
?B%E*QS]. In a dense time domain for any two time instants
t,t' € T with ¢ < ¢’ exists a time instant” € T with ¢ <

B. Temporal Issues

o Temporal operations (based on time-related operat
from Allen’s logics): meetg(neighboring situationspre-
decessol(use ofbeforg, successofuse ofafter), starts

e o t" < t' like in the area of real numbers.
finishes synchronougshare the same time interval). . o : . .
. Relationship predicates (based on relationships of th Granularity. Granularitiesare build by aggregating portions

intervals and characteristic valuespmpatible(charac- of the time domain into granules. granuleis a non-empty

. . L subset of the time domain. A set of granules is called a
teristics do not contradict)independent subsituation . . L o
granularity, whereby certain restrictions apply; firstamules

part-of. . .
o in a granularity do not overlap, and second, the granules are
Operators on situation sequences. ordered according to the temporal order of their time irtstan
o Set operatorsunion, intersection difference To achieve that, granularities are commonly defined to be a
» Relational operatorsselection projection mappingG from integers, called thimdex setto subsets of the

« Additional operatorsgeneralization extraction time domain, such that: (1) if< j andG(i) andG(j) are not



S1 aby a aby
S2 - b aby ‘
S2\Sp | by
union(S1,Sy) abg a aby a aby
intersect(S1,Sp) - ab; a

Fig. 1. Intended results of the set-based operators: TheesegsS; and.S> contain different (and partially contradicting) knowledgbout the situations of
a person. The labels represent the characteristics andtsbeinterpreted as follows: = in Athens,b; = using a cab, anéz = using the metro. Additionally
the knowledge i{; — —b2 and vice versa) is supplied by a transportation taxonomg. gdps mean that there is no situational knowledge available

(a) (b)

start meeting end meeting start meeting end meeting
»> > 15 min - - > 15 min
f:09 10:00
9:05:43 10:02:35, 10:03:00) \
»  seconds -4 . » seconds

position coffee
change low

Fig. 2. The occurrence time of events can be given at diffegesnularities and precision (adapted from [CCO02]).

empty, then each element of G(i) is less than all elements offFiner than.A granularityG is calledfiner thana granularity
G(j), and (2) ifi < k < j andG(i) andG(j) are not empty, H, denotedG =< H, if for every granuleG(i) of G there
then G(k) is not-empty [BDE98]. The second restriction exists a granuléZ(j) in H such thatG(i) represents a subset
ensures that all integers of the index set actually reptesen H (j).
a granule. Groups into. A granularity G is said to group into a
[CFPO4] introduces the following terms to describe thgranularity H, written G < H, if all granules of H can be
properties of granularities with respect to their coverafe represented by the union of a set of granuleg-of
the time domain. Partitions. A granularity G partitions a granularityH if
. externally continuousif there are no gaps between th¢ < H and G < H. In this case, both granularities cover
granules; exactly the same portion of the time domain image, i.e., the
. internally continuousif there are no gaps inside theimages ofG' and H are identical.
granules; Covered ByA granularityG is covered by a granularityf
« continuous if the granularity is both externally andif the image ofG is a subset of the image daf.
internally continuous;
. total, if the image of the granularity covers the whold. Conversion Operations

time domain; ~ Comparing or integrating situational information that use
« uniform if all non-empty granules have the same cardifferent granularity requires homogenization, that ibe t
nality. information needs to be converted to a common granularity be
We extend this nomenclature with the definition of the properfore the operation is performed. This requires convertimg t
right-total, which is important when transforming situationapoints between granularities at the first place. The two aper
information according to different granularities. tionsscaleandcasthave been proposed in order to accomplish
Definition 2.6 (Right-total):A granularityG is calledright-  this conversion [DELS00]. Because the scale operatios toie
total if and only if G is continuous and every granujes G maintain as much temporal information as possible it always
has a successor. produces an indeterminate value (i. e., an interval) whe us
to move to a finer granularity. Since situations are modeled
using determinate values (time instants) to describe #iait
Granularities that use the same time domain as their baaied end, scale cannot be used. In contrastcH#stoperation
can have different relationships. When using granularitee always produces a determinate result (when applied to a time
describe situations, their relationships, and operatidths point), regardless of whether we switch to a finer or a coarser
notions presented below are the ones we use. granularity. That is, by usingastthe situation model structure
Subgranularity.A granularity G is called asubgranularity is kept. In [DELS00], different semantics (left-operanidht-
of a granularityH, denoted C H, if the set of granules of operand, finer, and coarser) are discussed that differ inthew
G is a subset of the set of granules idt two operands (in our case situations or situation sequgnces

C. Granularity Relationships



are homogenized. The latter two are used in our approaelpplying the set-based operators, nameifference(\ ), union
Using thefiner semantics the time values of both operands)), andintersection(N), introduced in Section II.

are converted to the granularity that is finer than the other;In contrast, moving to a finer granularity (“refinement”)
or, if both granularities are incomparable, to a granufariis simple. For example, transforming to the granularity of
that is finer than both is chosen. One should be aware tlsaconds just requires that all time points be mapped frone the
an interpretation of a situation sequence resulting from cavn granule to the respective starting second usingctst
so-called refinement requires caution, because it “pratendperation.

to have information that is more precise than it actuall
is. Using thecoarser semantics conversion is done to th
coarser granularity, or in case of incomparable granigarit The basic situation model proposed in [MPVWO05] relies
to a finest granularity that is coarser then the granularitie on the assumption that all time points belong to one single

. Granular Situation Model

both operands. granularity, which is a limitation when situational infoation
is coming from of different sources. That means, for some rea
I1l. TEMPORAL GRANULARITY AND SITUATIONS world applications the issue of temporal compatibility dee

. . . - to be addressed when combining, transforming, or comparin
This section starts with a description of the problem befo[s?tuational information g g paring

proposing an advanced granular situa}tion. concept. We th_erwe therefore extend this simple model with the notions of
present the procedure to coarsen situations, starting Wi poral granularities.

? ”nalw(ej gpproach (Vf\_/fh'.Ch tmay lntrﬁdgjce (;nfortmr_:mcln loss A granular time pointis given by a tupldg, G) whereG is
oflowed by a more €flicient approach basedrasternization. granularity andy identifies the granule withigs. Following

common notation conventions we write the granularity as a
subscript to the label of the granule, e.g., 14;30 Using
The aspects of temporal granularity described abogeanular time points would enable us to model situations
strongly influence how situational information is to be mte and situation sequences where all time points may be of
preted. The sequence of the patterns, for instance, mayehadifferent granularity. However, in most application cageis
with the level of granularity chosen. The question whethéi) sufficient to have one granularity per situation seqegnc
detailed or more generic features can be used to describe siind (ii) easier to communicate such situational infornratm
ations— or whether one can recognize the internal structurethe user. Users specify items of their own agenda with all the
an event or not— depends also on the granularity with whigdame temporal precision, first, in order to keep information
the situations are represented. That is, in order to anah&e comprehensible, and second, existing calendar applicato
knowledge contained in situation sequences we not only hawet provide the required functionality. Also, data acqdifi®m
to be able to move between different levels of abstracti@®nsors mostly depend on some fixed measurement interval.
(depending on the structure of the dimensions) but we aldéthough a model based on granular time points would allow
need (i) a technique that facilitates the representaticsitof- for the specification of time points of different granulgrit
tional knowledge at different levels of temporal granujaaind ~ within a situation or situation sequence, we propose siiedli
(i) procedures to switch level (similar to querying a dasé® mono-granularity definitions.

A. Interpreting and Combining Situational Knowledge

using different granularities). The temporal granulatiyel We extend the model and definegeanular situationas a
also influences the level of abstraction w.r.t the charsties, tuple (s, G), wheres is a situation(t,, t,,, SC) andt,, t, € G.
hence the underlying database schema that is used. A granular situation sequencis defined as(Seq, G) where

However, not only the interpretation of single situatiorfeq = (.5, <:) is a sequence of not-overlapping situations and
sequences, but also the combination or comparison of twbdenotes the granularity common to all time points used.
ore more sequences depend on these granularities and dm the granular situation model, every situation and sit-
the issues of temporal compatibility connected to them. Tmtion sequence has its own granularity; the granularity of
that end, the temporal information needs to be homogenizzdsituation or a sequence is the set of granules used to
with respect to the granularity used. Thearser semantics specify the time points they include. For example: situatio
conversion where both arguments of an operation are moved- (14:30,i,,15:15,in,{'Meeting’}), the granularity of this
to the coarser granularity of both is best suited to mosituation is given by two granules covering the intervals
application cases. In the following, we propose a simildi4:30:0014:31:00 and[15:15:0015:16:00 of the underlying
procedure, where situation sequences are first homogenitiste domain. That such set of granules form a granularity
with respect to their granularities. Homogenizing mears this guaranteed by the definition of a situation and a situation
the coarser granularity is chosen and the sequence with eguence, which both require a total temporal order of the ti
finer granularity is transformed ocoarsened(a processus points used.
similar to generalization), such that both sequences atkeof  Definition 3.1 (Temporal compatibility)Two situation se-
same granularity afterward and can be combined or compargeencesS; and .S, are temporally compatible if there exists
by applying the respective operator without further preoegs a granularityG of which the granularities of both sequences
The comparison or combination operation itself is achidwed G(S;) and G(S2) are subgranularities.



Sq >  — a, a, b bc c
S, i ]

S3 [— {1

Sq

a, a, b C
——

Fig. 3. Synchrony of situations considering temporal glarity: situationso 5
is synchronous ta; and toss, because there respective begin and end tin s,
points match;but, s; and s3 are not synchronous, (synchrony is no longe ) ) . ) o
a transitive relation); whethes, and s, are synchronous is, because of th Fig. 4. Different coarsening algorithms produce differsitiiation sequences.
overlapping begin time, not decidable. Applying the naive version (Alg. 1) results in sequenSg, which has

unexpected gapsS;, however, is a coarsened version $fthat is closest
to the input, and thus represents the intended result.

a, a, b b bc C

Symbolically:

temporally-compatible(Sy, S2) <= 1) temporal precisiorp which is used to define the granularity
3G . G(S1) T GAG(S:) CG on the time axis.

Synchrony.The set-based operators (union, intersectio;d\1g 1 Coarsening a situation
difference), which play a major role in comparing and in—= -
tegrating situational knowledge, are based on the notion @BARSEN—SITUATlON(situations, precisionp)
synchronized situationsind situation sequences. Two Situi start — begin time of situatiors
ations are calledsynchronousif they share the same time2 end — end time of situatiors
interval. When different temporal granularities are iweal
this relationship is not always decidable. In order to app
the operators we neeattual synchronywhich—in contrast
to potential synchrony—requires that both situations use the5
same granularity (referred to asono-granularitybelow).

Definition 3.2 (Mono-granularity synchrony)fwo
situations sy, so are synchronousif and only if they
share the same time interval. Two situations sequersges 3
So are synchronousf and only if for all situationss; € S;
there exists a situation, € Ss, which is synchronous te;

and vice versa. ) . . .
Symbolically: Although this algorithm ensures that every time point after

ward is specified using the granularity definedghit, in many
Sync(sy, s2) <= Starts(si, s2) A Finishes(s1,52) (2) cases, produces unwanted or non-intuitive results becafuse
Sync(S1, 82) = th_e information !oss |mpl|e(_1l (see the resulting s_equ_e&‘llcm
Fig. 4). The major reason is that tsequenc®f situations is
(V (81 S Sl) .3 (82 S Sg) Sync(sl, 82)) A . . .
(V(s2 € S2).3(s1 € S1). Sync(sz, 51)) not taken into account. First, some characteristic valhas t
’ 3) Were additionally observed create situations too shorttfer
_ _ _ defined grid. They collapse and are therefore no longerleisib
C. Coarsening: Naive Algorithm Other situations are just left or even broadened (althoegigo

In order to simplify the presentation of our coarseniniuch shorter than those that collapsed) just because tgim b

approach, we make the following assumptions about t@&d end are mapped to different granules. To circumvent this

granularities used: problem, all situations that have a duration that is less the

half (or just half) the size of a granule could (for fairness

SLCCESSOr: reasons) be removed as well. The first disadvantage could be

« All granularities arecontinuous i.e., neither a single met by coarsening not th_e situa_ti(_)ns from th_e sequences as
granule, nor the granularities themselves can have gafiiey aré but rather producing tineinimal producing sefrom

. Granularities used build a partitioning hierarchy; i. e Ne Sequence, coarsening the situations obtained, angingnif
there are no overlaps between the granules: the resulting situations back to get a coarsened versioheof t

Problems and reauirementahe first naive approach tOinput sequence. The result does look better, however, some
d ' PP knowledge is still lost (although it should not be). Some

the problem of coarsening a situation sequence uses a Sim- o . . L
. . ) . o problems arise if two (or more) neighboring situations are

ple algorithm. It just iterates over all single situationsao e :

sequence to coarsen them individuallv. That is. the beci themselves too short to be visible, but contain a common

engi time points of the situation are mgl ed on{o the tegmlh o i?nher level information (in case of hierarchically-define
P mapp POt ensions). For instance, if a sequence of subsequent shor

granularity chosen. As a result a situation can collapsento a_ " . . .

. . . . working tasks each with a duration of about 10 minutes to 20
event in case both time points-$egin as well asend —
are mapped to the same granUIe)A@SEN'S'TUAHON (See 1The precisionp has to be coarser than the precision of the granularity

Alg. 1) is invoked with the situation to be coarsened and theused by the input sequence.

start «— CAST(start,p)

end «— CAST(end, p)

if start = end

6 then return NIL > s collapsed

pattern «— pattern of situatiors
return (start, end, pattern)

« All granularities areright-total; i. e., every granule has a



a a, b C

minutes, is coarsened to a granularity of, let us say, 1 hc
every single task will collapse because of its shortnese. 1 g,

information that the user was ‘working’ all the time is lost a
well.

- a, b c

a 5 b b C

Stisync
s > a, a, b b & C
IV. EFFICIENT COARSENING MINIMIZING SITUATIONAL e
Y~ —
KNOWLEDGELOSS 2 - -
Because the algorithms discussed so far are not efficien d o

a

the sense that they lose too much knowledge and therefore : . _ . .
ig. 5. Measuring the distance by first synchronizing bothuseces and

not produce the results that one would expect, we NOW pres compting the distance element-wise.
an algorithm that is able to coarsen a situation sequende w
preserving as much situational knowledge as possible.

Task definition.We revise the coarsening task in ordebetter than another one, only a relative distance is needed a
to find a coarse representation of a situation sequence thaimple metrics is sufficient.
approximates the input sequence as near as possible, suchhe measuring procedure proposed in the following com-
that only a minimum of situational knowledge is lost; imrises the following basic steps:

other words, our goal i find a representatiolc of S'in 1) Cast the situation sequences to a common temporal
Information loss.A first queStlon arising from the task 2) Synchronize the situation sequences to be Compared_

definition is what does “losing knowledge” precisely mean 3) Measure the distance element-wise by iterating through
and how to measure the loss. We obviously lose knowledge if * the puilt interval pairs.

a characteristic value holding at a certain time point omr@e  4) Add up the intermediate results.

certain interval is no longer present in the coarsened merS|B¥ synchronizing the sequences and S, both are split
0

of the input_ sequence. However, _also adding facts that o the same number of intervals (see Fig. 5), where the
not present in th_e Input sequence mtrodu_ce errors and Cani-tfﬁ elements of either sequence are of equal length. This
reg_arded as lost |“nf0_rn_1at|”o_n. In the_ following, we assurt thenables us to iterate through the sequences and compute the
losing as well as "gaining” information are equally Wrongjandistance element-wise. Because there cannot be a change of

have to be con_S|dered when computm_g_th_e overall error. patterns within these elements, we can compute the distance
The coarsening procedure should minimize the error cau comparing the patterns and multiplying the result with

by retracting or adding information. In order to understéms! the length or duration of the interval. Adding up the partial

(rjmnlmum criterion, Wﬁ have to ?uantn‘y the errg_rﬁand dif_'neé’istances yields the overall distance between the segsieTze
Istance measurde. There ?re (_)hcourﬁe manly(/j bl erenlt_e[:taeompute the distance between two patterns, we use a simple
metrics or procedures or algorithms that could be appliew Oy, 41 by counting the number of values that are exclysive

possible approach would be, e.g., using a shortest-editing gjier pattern. Because we only need a relative measure,

path algorithm. Here we would chop the sequences that argfy approach is sufficient (we will see later that we can also

be compared Into smglg segments a_ccordmg to the tempqiay more sophisticated distance measures by introducéng th
gre(ljnulanty choien. Us;ng the algorithm we couk:]_ ahnalyzrﬁ)tion ofinformation contenbr costfor every value). Let;
and compare the resulting pattern sequences, which WOld, e the length of interva) P,; and P»; the patterns of,;
result in information where to insert or where to remove 8nd S, in intervali andT(P) the theory of a patter®, i. e

certain segment. However, this kind of algorithm emphasiﬁqe set of features derivable from this pattern, the foliayvi
the retaining of the sequence and retaining of the tramrsitioformu'as describe this procedure

and weights these much more than the actual position of a

segment. This means that movements of situations on the dif = card(T(P;) \T(Py) (4)
time axis are considered only insufficiently, when applytnig d- = card(T(Py)\T(Py,)) (5)
procedures to situation sequences. We therefore followhano n

approach calledasterization known, for instance, from digital distance(S1, S2) def Z ti(df +d;) (6)
imaging. The idea is to split the time axis into granules (in i=1

digital imaging defined by theesolutior) and to analyze each £ j4 4 describes the number of features exclusivelyiin

granule separately. where Formula 5 describes the number of features onlys jn
The sum ofd;” andd; represents the distance between both
patterns.

The main objective of the development of a distance metricsin order to define a more sophisticated distance metrics, we
is its ability to estimate different coarsening algorithmith could associate a real number with any node in a hierarchical
respect to their capability to preserve situational infation. dimension representing the information value of the retpec
Because we only need it to decide whether one algorithmpsoposition. Note that such values can also differ for a node

A. Measuring Distances



in case the same structure is used in different dimensic S =

That is, the cost value does not only depend on the conc —
from the dimension but on the feature. We introduce a ci _
functionv: F — R that gives the cost or information value 0 spectral tﬂéq:;

a single featuref € F. This value represents the amount ¢ analysis” | | | | |
information content that is directly associated with tldatfire.  deciding on
It does not include the cost or value of the features derava Visibility [T | ] [ ===
from f. In order to make this clear, we define tbemulative

valueof a featuref to be the sum of the values of the theor
T(f) of f; Fig. 6. The general coarsening algorithm. Note that thesrule— o and
az — a are given by a dimension structure.

) a a b b bc C
S

vem() S D V() | fi € TS @)
=1 with respect to this distance metrics. The algorithm uses th
Applying the cost functionv(f) to our distance measurerasterization approach mentioned before. That is, in eshtr
formulas 4 and 5 look slightly different: to the simple algorithms already presented, it does not trea
m situations and their patterns as a whole, but analyzes the
dr = Zv(fj) | f; € (T(Py;) \ T(P2)) (8) features of the situations based on granules. The general
= procedure comprises the following steps:
m 1) Slicing. The input sequence is chopped according to the
di = ) _v(fj) | f; € (T(Pay) \ T(Pry)) ) granularity chosen, at the start of every granule. This
j=1 first step can be regarded as synchronizing the sequence
In the special case tha{ f) equally returnd for all features, with the sequence of granules. The next steps are done

adding the values simply means to count the features. That €lement-wise for every granule.
is, in that case, the formulas 8 and 9 are equivalent to the2) Analyzing.The features of all situation patterns present

previous versions. within a single granule are being extracted.

In order to estimate the quality of a coarsening algorithm 3) Deciding on visibility.A single feature is visible if its
we do not really need to actually quantify the distance betwe overall presence within a granule is greater than half
two situation sequences. Only a relative distance, deténgi the size of a granule, thus a feature either vanishes or

whether the distances between an input sequence and two fills a complete_ granule. This ensures .that_the distance
coarsening results are equal ore which of them is greater tha ~ Petween the original and the resulting situation sequence
the other, is necessary. Because the relation>(, =) for any and thus the error introduced is minimal.
two terms>_ vy (f;) and > vo(f;), wherev; and v, denote After having processed all granules, the resulting secuiésic
different cost functions, will be the same, provided thetgoscoalesced. Fig. 6 illustrates this approach.
returned byv; as well asv, are greater than zero, we can In order to simplify the procedure, we here assume that
use any cost function even a constant. However, we shotii@ granularity is built of equal sized granules of a certain
note that we additionally need the restriction of a constaptecisionp. The castoperation maps an arbitrary time point
cost functions over time. to (the start of) a granule. Any subsequent granule can then
ShortcomingsThe metrics proposed above is not able tbe identified by adding a multiple of.
handle non-convex granules or non-continuous granwdariti The simple algorithm shown in Fig. 6 is not really effi-
Gaps, i.e., portions of the time line that are not covered Igjent, as it iterates over all granules covered by the sdnat
a granularity are ignored. Problems arise from this factenvh sequence, and should be regarded as a more or less deelarativ
situation sequences are compared, the granularities afhwhspecification of the coarsening procedure. To optimize &, w
have different images, i. e., the gaps in both granulariteage have only to consider the granules in which the input segeienc
different locations or extents. If both granularities, lewer, has at least one event. Between such granules, there with be n
cover the same portion of the time domain— hence shariajanges and the pattern can be transmitted unchanged éto th
the same image, as is the case, for instance bfminess- resulting sequence. The final procedure is presented in2Alg.
minutesandbusiness-hours-then only the quantitative result The algorithm iterates through all events of the input
will be distorted; the computed distance will be greatemthasequence. That is, for every time point where some change
it should be. The relative distance, however, and with it theccurs it first computes the temporal granule this change

qualitative properties<(, >, =) are preserved. belongs to. It computes the lower boung and the upper
) boundt,;, (lines 12—14). Using the intervady,, t1.s:) (Where
B. Algorithm st represents the upper bound of the last step) we add a

We now present a coarsening algorithm that is able Situation to the result using the pattern of the input seqeen
produce a coarsened representation of a situation sequethe¢ holds during this interval (lines 15-17). Because gher
that approximates the input sequence as close as possibleo transition in that particular interval, we can justdak



the pattern at some point betweepns, and ¢y, (line 17). as a situation sequence, whereby at first only approximate
Following this step we process the intervily,t,,). We information is available, that is, a rudimentary plan using
therefore first extract all features from the situation grattof coarse grained time scale is specified.

the input sequence (line _25). Then, for all features em_dact (w20, w21, {loc( Athens)}),

we compute the overall time of presence of a feature in the .

) ; : o Sweek = (ew21, cw22, {loc(Corinth)}), (10)
interval (line 28), check whether this duration is longedrth (w22, w23, {loc( Patras)})

half the resolution (line 29), and in case this is true, we add CWes, ewes, poctratras) ),
the feature to the resulting patteRi (line 32). If there was at A detailed planning on that basis refines the situation secpie
least one feature added to this patteP,will not be empty, afterwards.
and we add a new situation to the resulting sequence. (line 36

The algorithm ends when all events of the input sequence have

been processed. (11.05 07:00, 11.05 12: 30,
V. APPLICATION {loc(Europe),
. L . . transp(airplane)}),

This section illustrates the practical use of the algorithm (11.05 12:30, 11.05 13:30
presented above. It starts with a description of a general {10('3(Athe'ns)’ ' Y
architecture for systems relying on our S|tua_t|on mo_deir:]@ln Ss0min = transp(metro)}), (11)
shows two examples borrowed from a tourist application. (11.05 13:30, 11.05 14:30
A. System Architecture {loc(Plaka),

) L activity (eating)}),

The general system architecture of a situation-basedrayste (11.05 14:30, 11.05 16:00

is shown on Fig. 7 using an “intelligent” tourist guide as ap- {10('3(Acm'polés)}') Y

plication example. The situation provider component paesi
situation information and services (including granujahiain-
dling) to the other components. It connects to various sEurcSuch situational information (patterns, sequences) carsed

of situational information, including personal sourcesgy(e to propose tasks to the user and in turn select appropriate
positioning) and external sources (e.g., weather foregastontent (from travel guides or the web) to prepare for that
Situation information is stored in a situation repositoging task or to accomplish it (this approach is investigated i th
application specific dimensions and different categoréeg.( TALOS project [TALO8]). When viewed on different temporal
user expectations, observations, predications). In thenple, granularity levels the visibility of features of situat®ohange.
user applications access situational information (histamur- For instance, viewing the “using the metro” situation from
rent, and anticipated) using the situation provider'sriiaige formula (11) on aminutesgranularity would yield a situation
and use it to retrieve appropriate content from a situatiogequence that shows a first short walk to the airport metro

enabled content repository. station, second, a ride with the Blue line (to Syntagmacstfi
) then changing to the Red line (to Acropolis station), andlfna
B. lllustration Examples a short walk into the old town of Plaka.

Example 5.1:Let us assume that a tour operator prepares aViewing the same sequence on a coarser scale hides this
coach tour to Athens, Greece. They do their internal plapninetailed information. That is, which features of the sitres
(take off, arrival at the ferry, at the hotel, and so on) asigee are relevant is just specified using a time parameter. On that
as possible. However, information about the tour is given obasis the TALOS travel guide selects and presents different
to (potential) members of the coach party— as an exterregintent to the user; when plans are rudimentary only general
view — using days or half-days as granularity. This externaiformation on museums around are given; when plans get
information forms the expectations of the party membersiabanore concrete (going to the Acropolis by public transport)
the journey. Due to external conditions, the internal plaay tasks and information get also more concrete (get the route t
change (e.g., change of coach contractor, use of a differéime museum, buy tickets for the metro, and so on). The idea is
ferry, severe weather announced). In order to keep the pdayselect travel guide content of different levels of dejadit
up-to-date the tour operator compares the updated intglaval by switching between different temporal granularities loé t
with the information given to the party. A change would bsituation descriptions.
considered relevant when comparing the new plan (viewed at
the granularity of the external information) yields a dettahe
information that was originally being given out. In that eas Situation-based Services aim at capturing users’ environ-
the tour members should be informed (because they expechent in order to provide them with the most appropriate
different course of events). information at a given time. Situations are multidimension

Example 5.2:When preparing a business trip or a familyconcepts where each dimension is defined according to a
vacation, users usually do some planning about activities hierarchy of concepts. While rolling up along the hieraeshi
do, sites to see, and so on. Such information can be modeile@rder to consider aggregated concepts is a well undatstoo

VI. CONCLUSION
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operation, many problems arise when considering the time
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Fig. 7. General System Architecture.

We finally presented our current architecture and illustiat
our approach using examples from the tourism area. This
approach was implemented in Java, tested in different pioje
on JavaSE and JavaME environments, and ported to Objective-
C to support the iPhone platform. The situation model and
operations has been implemented on a mySQL 5 database,
using a star schema to model the multidimensional situation
space. The approach presented in this paper usesdabie
operator, which performs a precise mapping onto an exact
starting point of a situation. However, in applicationstsas
personal information management, this is not always t#alis
(e.g., a meeting around 9 a.m. may mean plus or minus 5
minutes and certainly not 9 o’clock by the second!). Therefo
our future work includes investigating the use of tloeind
operator together with the specification of a concept thatldvo
play an intermediary role between user-defined time (such as
the one of a calendar entry) and granules.
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COARSEN-SITUATION -SEQUENCE
situation sequencs, precisionp)

> if S is the empty sequence there is nothing to do
if S=0
then
return S

T < an array containing all time points ¢f
SFCS — @

tiast < NIL
for i < 1 to length[T]
do
> compute the granule (lower bourng
and upper bound,;) for time ¢
t «— TVi]
ti, — t/p
by — tin - p
tup < lip +p
if (tlast 7£ N”—) A (tlast < tlb)

> the interval between the upper bound of the

last granule #(.s;) and the lower bound of
the current {j;,) forms a single situation
then P « pattern ofs at time ;.
if P#£0
>> create a new situation and add it
to the resulting sequence
then s «— (tast, tib, P)
Sres = Sres ) {S}

if tast < tub
then P « pattern ofS at timety,
P 1
F «— the set of all single features d@?
for j <« 1 to length[F]
do f « FTi
d «— the duration of featurg
in [, tup)
if d>p/2
then
> add featuref to the
resulting patternP’
P’ — P'U{f}
if P£0)
> create a new situation and add it
to the resulting sequence
then s « (tlb, tub, P/)
Sres = Sres ) {S}

tlast — tub

return COALESCHE Syes)
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