
 

*  Fraunhofer Institute for Software and Systems Engineering (ISST) 
{stefan.pfennigschmidt, agnes.voisard} @isst.fraunhofer.de 
† Computer Science Institute, Freie Universität, Berlin, Germany 
 

 
Handling Temporal Granularity in  

Situation‐Based Services 
 

 

Stefan Pfennigschmidt* and Agnès Voisard *† 

 

TR‐09‐005 

July 2009 

Abstract 

In many application fields such as disaster management or personal planning, 
efficient mobile services should capture users' context in order to provide them 
with the most appropriate information at a given time. Situation‐based services 
aim toward this direction. They go beyond location‐based services as they take a 
user's current situation into account. Situations include user profiles together 
with dimensions such as their location, current activity, or type of connectivity. 
They can be derived from direct observations or from electronic calendars and are 
defined as valid during a time interval. Depending on the application but also 
within the same application the time interval of interest can be of various 
granularities. It is crucial to handle time granularity efficiently and in a well‐
defined manner. In this paper, we investigate the handling of various granularities 
for situations and situation sequences through, in particular, coarsening methods. 
We propose an algorithm that we tested in concrete projects and we illustrate its 
use in a tourism application. 
 



I. I NTRODUCTION

Situation-based services have emerged as services that cap-
ture (mobile) users’ dynamic profiles in order to send them
appropriate information. Situations are defined over various
dimensions such as location, current activity, or type of
connectivity. They can be derived from direct observations(by
sensing context), from electronic calendars, or estimatedlook-
ing at either individual or group behavior. They are defined as
valid during a time interval. Depending on the application but
also within the same application the time interval of interest
can be of various granularities.

Handling temporal granularity in situation-based services is
of crucial importance in order to deliver appropriate informa-
tion to users and match their information needs as accurately as
possible. The need to handle granularity generally arises when
different sources of situational information are being used
and need to be combined and possibly compared. Most cur-
rent situation-based services — e.g., navigation services, user
schedule assistants, or weather forecasts — integrate sources
that are based on different temporal granularities. Combining
this information is sometimes necessary, for instance to get
an integrated view on the overall situation of a user or a
user group. In the latter case, we can take the example of
a disaster management system that needs to alert all the
users who are in a particular situation (location and activity).
Furthermore, many services such as Personal Information
Management (PIM) services or transportation services rely
on a functionality to compare precise schedules with roughly
defined plans. This applies, e.g., when one wants to know
whether an actual observation matches an intended course of
events, or whether certain predictions meet the expectations of
a user (see for instance [MPVW05] for more details). Last but
not least, in order to keep a user up-to-date with information
of different levels of detail (with respect to both content and
temporal precision), one needs to switch between different
temporal granularities.

The situation model that we take as a reference is defined
on many dimensions and each dimension is defined on a
hierarchy (for instance, if a user is in the Plaka district in
Athens, Greece, she will be in “the Plaka-district/Athens-
downtown/Greece/Southern Europe/. . . ” and so on). This is
useful to target users at different levels by rolling up in
the hierarchy (e.g., all inhabitants of Athens in a disaster
management application). With the time being one dimension,
one could assume that the same mechanism would apply to the
temporal characteristics. However, time plays a particular role
as it is a parameter of the situation concept and needs special
processing when situations are to be combined and merged.
In other words, tackling temporal granularity in this context is
different from tackling other types of granularity such as the
spatial granularity (which can be handled by a simple model
that handles hierarchies, such as an object-oriented model).
In this paper, we investigate the problem of handling various
temporal granularities for situations and situation sequences.
In our approach, we take as a basis existing concepts from the

temporal database community and we extend them in order to
use them in the context of situation-based services.

In early work, the temporal database community has focused
on defining and reasoning on time intervals [All84]. Temporal
granularity was introduced in the early 90’s [WJL91] and has
received notable attention from the temporal database com-
munity who mostly described temporal granularity handling
in a formal manner (see for instance [Euz95], [MGB+00],
[DELS00], [CC02], [CFP04], [GLz+04]). Context handling
in mobile environments started receiving attention in the late
90’s [ADB+99] and many conceptual approaches have been
proposed lately in the context of mobile applications (see
for instance [BD07] for a comprehensive survey), although
they usually focus on spatial, location-based aspects. Granular
context was introduced in various areas such as collaborative
work (see e.g., [DSD06], which concentrates on fuzzy inter-
vals) and mobile applications as an inherent concept [Sch05].
The situation model introduced in [MPVW04] is simple yet
powerful to capture users’ context at some granularity level but
does not consider different granularity combinations coming
from different sources. To the best of our knowledge, the
problem tackled in this paper has not been investigated so
far.

This paper is organized as follows. Section II gives the con-
cepts necessary to tackle this problem. Section III establishes
the relationship between temporal granularity and situations
and presents two coarsening procedures, a naive one and a
more elaborate one. Section V presents the architecture of our
system and illustrates our approach taking examples from the
area of tourist information services. Finally, Section VI draws
our conclusions.

II. M AIN CONCEPTS

This section introduces the main concepts used in this paper,
namely our situation model with an extended list of operators,
and temporal concepts such as granularity and granule. Part
of the basic terminology can be found in [BDE+98].

A. Situations and Situation Sequences

The notion of user context is usually understood as a
snapshot of his or her environment at a given time based on
raw values (e.g., temperature or location). The situation model
proposed in [MPVW04] abstracts from such values and defines
a situation as a collection of characteristic values (similar to
attribute values) valid during a time interval.

Definition 2.1 (situation):A situation is a tuple:s =
(ta, tb,SC ), with ta: beginning of the validity period,tb:
end of the validity period,SC = {C1.c1, . . . , Cn.cn}, with
C1, . . . , Cn characteristics andC1.c1, . . . , Cn.cn characteristic
values.
To capture situations at various levels of abstraction, char-
acteristics are defined along dimensions and are instances
of ontologies. Operators on characteristics and characteristic
values are introduced as technical tools for reasoning on
situations and are:ancestor: (ci, cj) → cn, which returns
the smallest common ancestor of two characteristics values,



most-specific-set: (csi, csj) → csl which finds the most
specific set of characteristic values common to two sets of
characteristic values, andcompare-set: (csi, csj) → [0, 1],
which gives the similarity between two sets of characteristics
(using a similarity metric on the subsume paths of the di-
mensions). In the following, to make it shorter we sometimes
denote feature a characteristic value andpattern a list of
characteristic values. We also use the termdimensionas a
short version of adimension structure, which represents the
hierarchy of attributes along one dimension.

One of the key notions of the situation model is that of
situation sequences. A situation sequence describes a sequence
of states over time. It can be used to describe the process of
writing a paper, or the sequence of transportation means I
used on a particular day in order to get from home to work.
Situation sequences are defined as follows.

Definition 2.2 (situation sequence):A situation sequence
(S,≺:) is a well-ordered set of not-overlapping situations.

The concept of situation sequences can be used by ap-
plication designers to anticipate upcoming situations andto
compare the system knowledge against the user’s current
situation to find possible discrepancy.

Situation sets.In contrast to situation sequences, simple
sets of situationsare not restricted w.r.t. the compatibility of
the situations contained. Situations from a set can overlap,
they can express contradictory knowledge, they can express
knowledge, which is partly shared by other situations, and
so forth; whereas situations belonging to the same situation
sequence can not.

Every situation sequence can be represented as a set of
situations. And if a set isconsistent, which means that all
situations contained are pairwise compatible, this set canbe
used to produce a situation sequence out of it by unifying its
elements (seeunion operator below). Except for the empty
sequence there always is an infinite number of different
consistent sets that can produce the same sequence. However,
there always is one smallest set of one-dimensional situations
that corresponds to every sequence. This set is calledminimal
producing setof a situation sequence. Because both a situation
sequence and its minimal producing set are equivalent w.r.t.
their situational knowledge, often the set can be used instead of
the sequence itself when manipulating situational information.

Operators on situations within situation sequences.

• Temporal operations (based on time-related operators
from Allen’s logics):meets(neighboring situations),pre-
decessor(use ofbefore), successor(use ofafter), starts,
finishes, synchronous(share the same time interval).

• Relationship predicates (based on relationships of the
intervals and characteristic values):compatible(charac-
teristics do not contradict),independent, subsituation,
part-of.

Operators on situation sequences.

• Set operators:union, intersection, difference.
• Relational operators:selection, projection.
• Additional operators:generalization, extraction.

Since the algorithm presented later relies on the set-based
operations we give their definitions hereafter (see Fig. 1 for
an illustration).

Definition 2.3 (Difference:\:S × S → S): The difference
of two situation sequencesS1 andS2 is the situation sequence
describing the situational knowledge contained inS1 that do
not appear inS2. We writeS1 \ S2.

Definition 2.4 (Intersection:∩:S × S → S): The intersec-
tion of two situation sequencesS1 and S2 is the situation
sequence describing the situational knowledge contained in S1

as well as inS2. Thus an intersection describes the knowledge
shared by two sequences. We writeS1 ∩ S2.

Definition 2.5 (Union:∪:S × S → S): The union of two
compatible situation sequencesS1 ∪ S2 is the situation se-
quence describing the combined situational knowledge of both
sequencesS1 andS2. We write S1 ∪ S2.

B. Temporal Issues

Temporal statements can be made using different precisions.
Differences in the accuracy could stem, for instance, from
inaccuracy of clocks. They result from the size and exact
keeping of measurement intervals. This accuracy or these
inaccuracies play a major role when it comes to modeling
and interpreting situational information. Time points, used to
specify situations, cannot be considered exact in an absolute
sense. They can only be considered exact on a certain scale
(see Fig. 2 in a PIM application). This scale can be defined
by tolerances which define the granularity of the time points.

Temporal indeterminacy.Temporal indeterminacy can have
different reasons, which can be grouped into two categories: (i)
vagueness due to imprecise measurement and (ii) inaccuracyof
data due to the loss of information resulting from a conversion
from a higher to a lower granularity. Many approaches to
model time concepts using different granularities or unitsof
time have been proposed (see related work in the introduction).
The granularity-related concepts and their definitions that
are widely accepted and commonly used in the temporal
database and temporal reasoning communities (see for instance
[BDE+98] or [DELS00]) are given below.

Time domain.A time domainis defined as a pair(T ;≤
) where T is a non-empty set of time instants and≤ is a
total order onT . The time domain represents the primitive
atomic values used to describe all other time related concepts.
One can distinguish between dense and discrete time domains
[BDE+98]. In a dense time domain for any two time instants
t, t′ ∈ T with t < t′ exists a time instantt′′ ∈ T with t <
t′′ < t′ like in the area of real numbers.

Granularity. Granularitiesare build by aggregating portions
of the time domain into granules. Agranule is a non-empty
subset of the time domain. A set of granules is called a
granularity, whereby certain restrictions apply; first, granules
in a granularity do not overlap, and second, the granules are
ordered according to the temporal order of their time instants.
To achieve that, granularities are commonly defined to be a
mappingG from integers, called theindex set, to subsets of the
time domain, such that: (1) ifi < j andG(i) andG(j) are not



a

S1
ab2

S2
ab1

S1 \ S2 a ab2

S2 \ S1

union(S1,S2)

intersect(S1,S2)

ab1 ab2

a

a

a

ab1

ab1

ab1

ab1

ab1

b2

b1

Fig. 1. Intended results of the set-based operators: The sequencesS1 andS2 contain different (and partially contradicting) knowledge about the situations of
a person. The labels represent the characteristics and should be interpreted as follows:a = in Athens,b1 = using a cab, andb2 = using the metro. Additionally
the knowledge (b1 → ¬b2 and vice versa) is supplied by a transportation taxonomy. The gaps mean that there is no situational knowledge available.

Fig. 2. The occurrence time of events can be given at different granularities and precision (adapted from [CC02]).

empty, then each element of G(i) is less than all elements of
G(j), and (2) if i < k < j andG(i) andG(j) are not empty,
then G(k) is not-empty [BDE+98]. The second restriction
ensures that all integers of the index set actually represent
a granule.

[CFP04] introduces the following terms to describe the
properties of granularities with respect to their coverageof
the time domain.

• externally continuous, if there are no gaps between the
granules;

• internally continuous, if there are no gaps inside the
granules;

• continuous, if the granularity is both externally and
internally continuous;

• total, if the image of the granularity covers the whole
time domain;

• uniform, if all non-empty granules have the same cardi-
nality.

We extend this nomenclature with the definition of the property
right-total, which is important when transforming situational
information according to different granularities.

Definition 2.6 (Right-total):A granularityG is calledright-
total if and only if G is continuous and every granuleg ∈ G
has a successor.

C. Granularity Relationships

Granularities that use the same time domain as their basis
can have different relationships. When using granularities to
describe situations, their relationships, and operations, the
notions presented below are the ones we use.

Subgranularity.A granularityG is called asubgranularity
of a granularityH , denotedG ⊑ H , if the set of granules of
G is a subset of the set of granules ofH .

Finer than.A granularityG is calledfiner thana granularity
H , denotedG � H , if for every granuleG(i) of G there
exists a granuleH(j) in H such thatG(i) represents a subset
of H(j).

Groups into. A granularity G is said to group into a
granularityH , written G E H , if all granules ofH can be
represented by the union of a set of granules ofG.

Partitions. A granularity G partitions a granularityH if
G E H and G � H . In this case, both granularities cover
exactly the same portion of the time domain image, i. e., the
images ofG andH are identical.

Covered By.A granularityG is covered by a granularityH
if the image ofG is a subset of the image ofH .

D. Conversion Operations

Comparing or integrating situational information that use
different granularity requires homogenization, that is, the
information needs to be converted to a common granularity be-
fore the operation is performed. This requires converting time
points between granularities at the first place. The two opera-
tionsscaleandcasthave been proposed in order to accomplish
this conversion [DELS00]. Because the scale operation tries to
maintain as much temporal information as possible it always
produces an indeterminate value (i. e., an interval) when used
to move to a finer granularity. Since situations are modeled
using determinate values (time instants) to describe theirstart
and end, scale cannot be used. In contrast, thecastoperation
always produces a determinate result (when applied to a time
point), regardless of whether we switch to a finer or a coarser
granularity. That is, by usingcastthe situation model structure
is kept. In [DELS00], different semantics (left-operand, right-
operand, finer, and coarser) are discussed that differ in howthe
two operands (in our case situations or situation sequences)



are homogenized. The latter two are used in our approach.
Using thefiner semantics the time values of both operands
are converted to the granularity that is finer than the other;
or, if both granularities are incomparable, to a granularity
that is finer than both is chosen. One should be aware that
an interpretation of a situation sequence resulting from a
so-called refinement requires caution, because it “pretends”
to have information that is more precise than it actually
is. Using thecoarser semantics conversion is done to the
coarser granularity, or in case of incomparable granularities
to a finest granularity that is coarser then the granularities of
both operands.

III. T EMPORAL GRANULARITY AND SITUATIONS

This section starts with a description of the problem before
proposing an advanced granular situation concept. We then
present the procedure to coarsen situations, starting with
a naive approach (which may introduce information loss)
followed by a more efficient approach based onrasterization.

A. Interpreting and Combining Situational Knowledge

The aspects of temporal granularity described above
strongly influence how situational information is to be inter-
preted. The sequence of the patterns, for instance, may change
with the level of granularity chosen. The question whether
detailed or more generic features can be used to describe situ-
ations— or whether one can recognize the internal structureof
an event or not— depends also on the granularity with which
the situations are represented. That is, in order to analyzethe
knowledge contained in situation sequences we not only have
to be able to move between different levels of abstraction
(depending on the structure of the dimensions) but we also
need (i) a technique that facilitates the representation ofsitua-
tional knowledge at different levels of temporal granularity and
(ii) procedures to switch level (similar to querying a database
using different granularities). The temporal granularitylevel
also influences the level of abstraction w.r.t the characteristics,
hence the underlying database schema that is used.

However, not only the interpretation of single situation
sequences, but also the combination or comparison of two
ore more sequences depend on these granularities and on
the issues of temporal compatibility connected to them. To
that end, the temporal information needs to be homogenized
with respect to the granularity used. Thecoarser semantics
conversion where both arguments of an operation are moved
to the coarser granularity of both is best suited to most
application cases. In the following, we propose a similar
procedure, where situation sequences are first homogenized
with respect to their granularities. Homogenizing means that
the coarser granularity is chosen and the sequence with the
finer granularity is transformed orcoarsened(a processus
similar to generalization), such that both sequences are ofthe
same granularity afterward and can be combined or compared
by applying the respective operator without further processing.
The comparison or combination operation itself is achievedby

applying the set-based operators, namely,difference(\), union
(∪), and intersection(∩), introduced in Section II.

In contrast, moving to a finer granularity (“refinement”)
is simple. For example, transforming to the granularity of
seconds just requires that all time points be mapped from there
own granule to the respective starting second using thecast
operation.

B. Granular Situation Model

The basic situation model proposed in [MPVW05] relies
on the assumption that all time points belong to one single
granularity, which is a limitation when situational information
is coming from of different sources. That means, for some real
world applications the issue of temporal compatibility needs
to be addressed when combining, transforming, or comparing
situational information.

We therefore extend this simple model with the notions of
temporal granularities.

A granular time pointis given by a tuple(g, G) whereG is
a granularity andg identifies the granule withinG. Following
common notation conventions we write the granularity as a
subscript to the label of the granule, e.g., 14:30min. Using
granular time points would enable us to model situations
and situation sequences where all time points may be of
different granularity. However, in most application casesit is
(i) sufficient to have one granularity per situation sequence,
and (ii) easier to communicate such situational information to
the user. Users specify items of their own agenda with all the
same temporal precision, first, in order to keep information
comprehensible, and second, existing calendar applications do
not provide the required functionality. Also, data acquired from
sensors mostly depend on some fixed measurement interval.
Although a model based on granular time points would allow
for the specification of time points of different granularity
within a situation or situation sequence, we propose simplified
mono-granularity definitions.

We extend the model and define agranular situationas a
tuple(s, G), wheres is a situation(ta, tb,SC ) andta, tb ∈ G.
A granular situation sequenceis defined as(Seq , G) where
Seq = (S,≺:) is a sequence of not-overlapping situations and
G denotes the granularity common to all time points used.

In the granular situation model, every situation and sit-
uation sequence has its own granularity; the granularity of
a situation or a sequence is the set of granules used to
specify the time points they include. For example: situation
s = (14:30min,15:15min,{‘meeting’}), the granularity of this
situation is given by two granules covering the intervals
[14:30:00,14:31:00) and[15:15:00,15:16:00) of the underlying
time domain. That such set of granules form a granularity
is guaranteed by the definition of a situation and a situation
sequence, which both require a total temporal order of the time
points used.

Definition 3.1 (Temporal compatibility):Two situation se-
quencesS1 and S2 are temporally compatible if there exists
a granularityG of which the granularities of both sequences
G(S1) andG(S2) are subgranularities.



Fig. 3. Synchrony of situations considering temporal granularity: situations2

is synchronous tos1 and tos3, because there respective begin and end time
points match;but, s1 and s3 are not synchronous, (synchrony is no longer
a transitive relation); whethers2 and s4 are synchronous is, because of the
overlapping begin time, not decidable.

Symbolically:

temporally-compatible(S1, S2) ⇐⇒
∃G . G(S1) ⊑ G ∧G(S2) ⊑ G

(1)

Synchrony.The set-based operators (union, intersection,
difference), which play a major role in comparing and in-
tegrating situational knowledge, are based on the notion of
synchronized situationsand situation sequences. Two situ-
ations are calledsynchronousif they share the same time
interval. When different temporal granularities are involved
this relationship is not always decidable. In order to apply
the operators we needactual synchrony, which — in contrast
to potential synchrony— requires that both situations use the
same granularity (referred to asmono-granularitybelow).

Definition 3.2 (Mono-granularity synchrony):Two
situations s1, s2 are synchronous if and only if they
share the same time interval. Two situations sequencesS1,
S2 are synchronousif and only if for all situationss1 ∈ S1

there exists a situations2 ∈ S2, which is synchronous tos1

and vice versa.
Symbolically:

Sync(s1, s2) ⇐⇒ Starts(s1, s2) ∧ Finishes(s1, s2) (2)

Sync(S1, S2) ⇐⇒
(∀ (s1 ∈ S1) . ∃ (s2 ∈ S2) . Sync(s1, s2)) ∧
(∀ (s2 ∈ S2) . ∃ (s1 ∈ S1) . Sync(s2, s1))

(3)

C. Coarsening: Naive Algorithm

In order to simplify the presentation of our coarsening
approach, we make the following assumptions about the
granularities used:

• All granularities areright-total; i. e., every granule has a
successor;

• All granularities arecontinuous; i. e., neither a single
granule, nor the granularities themselves can have gaps;

• Granularities used build a partitioning hierarchy; i. e.,
there are no overlaps between the granules;

Problems and requirements.The first naive approach to
the problem of coarsening a situation sequence uses a sim-
ple algorithm. It just iterates over all single situations of a
sequence to coarsen them individually. That is, the begin and
end time points of the situation are mapped onto the temporal
granularity chosen. As a result a situation can collapse to an
event in case both time points —begin as well asend —
are mapped to the same granule. COARSEN-SITUATION (see
Alg. 1) is invoked with the situations to be coarsened and the

Fig. 4. Different coarsening algorithms produce differentsituation sequences.
Applying the naive version (Alg. 1) results in sequenceS

′

1
, which has

unexpected gaps;S
′

2
, however, is a coarsened version ofS that is closest

to the input, and thus represents the intended result.

temporal precisionp which is used to define the granularity
on the time axis.1

Alg. 1 Coarsening a situation.

COARSEN-SITUATION(situations, precisionp)

1 start ← begin time of situations
2 end ← end time of situations

3 start ← CAST(start , p)
4 end ← CAST(end , p)
5 if start = end

6 then return NIL � s collapsed

7 pattern ← pattern of situations
8 return (start , end , pattern)

Although this algorithm ensures that every time point after-
ward is specified using the granularity defined byp, it, in many
cases, produces unwanted or non-intuitive results becauseof
the information loss implied (see the resulting sequenceS

′

1 in
Fig. 4). The major reason is that thesequenceof situations is
not taken into account. First, some characteristic values that
were additionally observed create situations too short forthe
defined grid. They collapse and are therefore no longer visible.
Other situations are just left or even broadened (although being
much shorter than those that collapsed) just because their begin
and end are mapped to different granules. To circumvent this
problem, all situations that have a duration that is less then
half (or just half) the size of a granule could (for fairness
reasons) be removed as well. The first disadvantage could be
met by coarsening not the situations from the sequences as
they are but rather producing theminimal producing setfrom
the sequence, coarsening the situations obtained, and unifying
the resulting situations back to get a coarsened version of the
input sequence. The result does look better, however, some
knowledge is still lost (although it should not be). Some
problems arise if two (or more) neighboring situations are
themselves too short to be visible, but contain a common
higher level information (in case of hierarchically-defined
dimensions). For instance, if a sequence of subsequent short
working tasks each with a duration of about 10 minutes to 20

1The precisionp has to be coarser than the precision of the granularity
used by the input sequence.



minutes, is coarsened to a granularity of, let us say, 1 hour,
every single task will collapse because of its shortness. The
information that the user was ‘working’ all the time is lost as
well.

IV. EFFICIENT COARSENING M INIMIZING SITUATIONAL

KNOWLEDGE LOSS

Because the algorithms discussed so far are not efficient in
the sense that they lose too much knowledge and therefore do
not produce the results that one would expect, we now present
an algorithm that is able to coarsen a situation sequence while
preserving as much situational knowledge as possible.

Task definition.We revise the coarsening task in order
to find a coarse representation of a situation sequence that
approximates the input sequence as near as possible, such
that only a minimum of situational knowledge is lost; in
other words, our goal isto find a representationSG of S in
granularity G such thatdistance(S, SG) is minimal.

Information loss.A first question arising from the task
definition is what does “losing knowledge” precisely mean
and how to measure the loss. We obviously lose knowledge if
a characteristic value holding at a certain time point or over a
certain interval is no longer present in the coarsened version
of the input sequence. However, also adding facts that are
not present in the input sequence introduce errors and can be
regarded as lost information. In the following, we assume that
losing as well as “gaining” information are equally wrong and
have to be considered when computing the overall error.

The coarsening procedure should minimize the error caused
by retracting or adding information. In order to understandthis
minimum criterion, we have to quantify the error and define a
distance measure. There are of course many different distance
metrics or procedures or algorithms that could be applied. One
possible approach would be, e. g., using a shortest-editing-
path algorithm. Here we would chop the sequences that are to
be compared into single segments according to the temporal
granularity chosen. Using the algorithm we could analyze
and compare the resulting pattern sequences, which would
result in information where to insert or where to remove a
certain segment. However, this kind of algorithm emphasize
the retaining of the sequence and retaining of the transitions
and weights these much more than the actual position of a
segment. This means that movements of situations on the
time axis are considered only insufficiently, when applyingthis
procedures to situation sequences. We therefore follow another
approach calledrasterization, known, for instance, from digital
imaging. The idea is to split the time axis into granules (in
digital imaging defined by theresolution) and to analyze each
granule separately.

A. Measuring Distances

The main objective of the development of a distance metrics
is its ability to estimate different coarsening algorithmswith
respect to their capability to preserve situational information.
Because we only need it to decide whether one algorithm is

Fig. 5. Measuring the distance by first synchronizing both sequences and
computing the distance element-wise.

better than another one, only a relative distance is needed and
a simple metrics is sufficient.

The measuring procedure proposed in the following com-
prises the following basic steps:

1) Cast the situation sequences to a common temporal
granularity (using thefiner semantics).

2) Synchronize the situation sequences to be compared.
3) Measure the distance element-wise by iterating through

the built interval pairs.
4) Add up the intermediate results.

By synchronizing the sequencesS1 and S2 both are split
into the same number of intervals (see Fig. 5), where the
i-th elements of either sequence are of equal length. This
enables us to iterate through the sequences and compute the
distance element-wise. Because there cannot be a change of
patterns within these elements, we can compute the distance
by comparing the patterns and multiplying the result with
the length or duration of the interval. Adding up the partial
distances yields the overall distance between the sequences. To
compute the distance between two patterns, we use a simple
approach by counting the number of values that are exclusively
in either pattern. Because we only need a relative measure,
this approach is sufficient (we will see later that we can also
use more sophisticated distance measures by introducing the
notion of information contentor cost for every value). Letti
denote the length of intervali, P1i andP2i the patterns ofS1

andS2 in interval i, andT(P ) the theory of a patternP , i. e.,
the set of features derivable from this pattern, the following
formulas describe this procedure.

d+
i = card(T(P1i) \ T(P2i)) (4)

d−i = card(T(P2i) \ T(P1i)) (5)

distance(S1, S2)
def
=

n
∑

i=1

ti(d
+
i + d−i ) (6)

Formula 4 describes the number of features exclusively inP1i,
where Formula 5 describes the number of features only inP2i.
The sum ofd+

i andd−i represents the distance between both
patterns.

In order to define a more sophisticated distance metrics, we
could associate a real number with any node in a hierarchical
dimension representing the information value of the respective
proposition. Note that such values can also differ for a node



in case the same structure is used in different dimensions.
That is, the cost value does not only depend on the concept
from the dimension but on the feature. We introduce a cost
functionv:F → R that gives the cost or information value of
a single featuref ∈ F . This value represents the amount of
information content that is directly associated with this feature.
It does not include the cost or value of the features derivable
from f . In order to make this clear, we define thecumulative
valueof a featuref to be the sum of the values of the theory
T(f) of f :

vcm(f)
def
=

m
∑

j=1

v(fj) | fj ∈ T(f) . (7)

Applying the cost functionv(f) to our distance measure
formulas 4 and 5 look slightly different:

d+
i =

m
∑

j=1

v(fj) | fj ∈ (T(P1i) \ T(P2i)) (8)

d−i =

m
∑

j=1

v(fj) | fj ∈ (T(P2i) \ T(P1i)) (9)

In the special case thatv(f) equally returns1 for all features,
adding the values simply means to count the features. That
is, in that case, the formulas 8 and 9 are equivalent to the
previous versions.

In order to estimate the quality of a coarsening algorithm
we do not really need to actually quantify the distance between
two situation sequences. Only a relative distance, determining
whether the distances between an input sequence and two
coarsening results are equal ore which of them is greater than
the other, is necessary. Because the relation (<, >, =) for any
two terms

∑

v1(fj) and
∑

v2(fj), wherev1 and v2 denote
different cost functions, will be the same, provided the costs
returned byv1 as well asv2 are greater than zero, we can
use any cost function even a constant. However, we should
note that we additionally need the restriction of a constant
cost functions over time.

Shortcomings.The metrics proposed above is not able to
handle non-convex granules or non-continuous granularities.
Gaps, i. e., portions of the time line that are not covered by
a granularity are ignored. Problems arise from this fact, when
situation sequences are compared, the granularities of which
have different images, i. e., the gaps in both granularitieshave
different locations or extents. If both granularities, however,
cover the same portion of the time domain — hence sharing
the same image, as is the case, for instance, forbusiness-
minutesandbusiness-hours— then only the quantitative result
will be distorted; the computed distance will be greater than
it should be. The relative distance, however, and with it the
qualitative properties (<, >, =) are preserved.

B. Algorithm

We now present a coarsening algorithm that is able to
produce a coarsened representation of a situation sequence
that approximates the input sequence as close as possible

Fig. 6. The general coarsening algorithm. Note that the rules a1 → a and
a2 → a are given by a dimension structure.

with respect to this distance metrics. The algorithm uses the
rasterization approach mentioned before. That is, in contrast
to the simple algorithms already presented, it does not treat
situations and their patterns as a whole, but analyzes the
features of the situations based on granules. The general
procedure comprises the following steps:

1) Slicing.The input sequence is chopped according to the
granularity chosen, at the start of every granule. This
first step can be regarded as synchronizing the sequence
with the sequence of granules. The next steps are done
element-wise for every granule.

2) Analyzing.The features of all situation patterns present
within a single granule are being extracted.

3) Deciding on visibility.A single feature is visible if its
overall presence within a granule is greater than half
the size of a granule, thus a feature either vanishes or
fills a complete granule. This ensures that the distance
between the original and the resulting situation sequence
and thus the error introduced is minimal.

After having processed all granules, the resulting sequence is
coalesced. Fig. 6 illustrates this approach.

In order to simplify the procedure, we here assume that
the granularity is built of equal sized granules of a certain
precisionp. The cast operation maps an arbitrary time point
to (the start of) a granule. Any subsequent granule can then
be identified by adding a multiple ofp.

The simple algorithm shown in Fig. 6 is not really effi-
cient, as it iterates over all granules covered by the situation
sequence, and should be regarded as a more or less declarative
specification of the coarsening procedure. To optimize it, we
have only to consider the granules in which the input sequence
has at least one event. Between such granules, there will be no
changes and the pattern can be transmitted unchanged into the
resulting sequence. The final procedure is presented in Alg.2.

The algorithm iterates through all events of the input
sequence. That is, for every time point where some change
occurs it first computes the temporal granule this change
belongs to. It computes the lower boundtlb and the upper
boundtub (lines 12–14). Using the interval[tlb, tlast) (where
tlast represents the upper bound of the last step) we add a
situation to the result using the pattern of the input sequence
that holds during this interval (lines 15–17). Because there
is no transition in that particular interval, we can just take



the pattern at some point betweentlast and tlb (line 17).
Following this step we process the interval[tlb, tub). We
therefore first extract all features from the situation pattern of
the input sequence (line 25). Then, for all features extracted
we compute the overall time of presence of a feature in the
interval (line 28), check whether this duration is longer than
half the resolution (line 29), and in case this is true, we add
the feature to the resulting patternP ′ (line 32). If there was at
least one feature added to this pattern,P ′ will not be empty,
and we add a new situation to the resulting sequence. (line 36).
The algorithm ends when all events of the input sequence have
been processed.

V. A PPLICATION

This section illustrates the practical use of the algorithm
presented above. It starts with a description of a general
architecture for systems relying on our situation model. Itthen
shows two examples borrowed from a tourist application.

A. System Architecture

The general system architecture of a situation-based system
is shown on Fig. 7 using an “intelligent” tourist guide as ap-
plication example. The situation provider component provides
situation information and services (including granularity han-
dling) to the other components. It connects to various sources
of situational information, including personal sources (e.g.,
positioning) and external sources (e.g., weather forecasts).
Situation information is stored in a situation repository using
application specific dimensions and different categories (e.g.,
user expectations, observations, predications). In the example,
user applications access situational information (historic, cur-
rent, and anticipated) using the situation provider’s interface
and use it to retrieve appropriate content from a situation-
enabled content repository.

B. Illustration Examples

Example 5.1:Let us assume that a tour operator prepares a
coach tour to Athens, Greece. They do their internal planning
(take off, arrival at the ferry, at the hotel, and so on) as precise
as possible. However, information about the tour is given out
to (potential) members of the coach party — as an external
view — using days or half-days as granularity. This external
information forms the expectations of the party members about
the journey. Due to external conditions, the internal plansmay
change (e.g., change of coach contractor, use of a different
ferry, severe weather announced). In order to keep the party
up-to-date the tour operator compares the updated internalplan
with the information given to the party. A change would be
considered relevant when comparing the new plan (viewed at
the granularity of the external information) yields a deltato the
information that was originally being given out. In that case
the tour members should be informed (because they expect a
different course of events).

Example 5.2:When preparing a business trip or a family
vacation, users usually do some planning about activities to
do, sites to see, and so on. Such information can be modeled

as a situation sequence, whereby at first only approximate
information is available, that is, a rudimentary plan usinga
coarse grained time scale is specified.

Sweek =







(cw20, cw21, {loc(Athens)}),
(cw21, cw22, {loc(Corinth)}),
(cw22, cw23, {loc(Patras)}),







(10)

A detailed planning on that basis refines the situation sequence
afterwards.

S30 min =























































































. . .
(11.05 07:00, 11.05 12:30,
{loc(Europe),
transp(airplane)}),
(11.05 12:30, 11.05 13:30,
{loc(Athens),
transp(metro)}),
(11.05 13:30, 11.05 14:30,
{loc(Plaka),
activity(eating)}),
(11.05 14:30, 11.05 16:00,
{loc(Acropolis)}),
. . .























































































(11)

Such situational information (patterns, sequences) can beused
to propose tasks to the user and in turn select appropriate
content (from travel guides or the web) to prepare for that
task or to accomplish it (this approach is investigated in the
TALOS project [TAL08]). When viewed on different temporal
granularity levels the visibility of features of situations change.
For instance, viewing the “using the metro” situation from
formula (11) on aminutesgranularity would yield a situation
sequence that shows a first short walk to the airport metro
station, second, a ride with the Blue line (to Syntagma station),
then changing to the Red line (to Acropolis station), and finally
a short walk into the old town of Plaka.

Viewing the same sequence on a coarser scale hides this
detailed information. That is, which features of the situations
are relevant is just specified using a time parameter. On that
basis the TALOS travel guide selects and presents different
content to the user; when plans are rudimentary only general
information on museums around are given; when plans get
more concrete (going to the Acropolis by public transport)
tasks and information get also more concrete (get the route to
the museum, buy tickets for the metro, and so on). The idea is
to select travel guide content of different levels of detailjust
by switching between different temporal granularities of the
situation descriptions.

VI. CONCLUSION

Situation-based Services aim at capturing users’ environ-
ment in order to provide them with the most appropriate
information at a given time. Situations are multidimensional
concepts where each dimension is defined according to a
hierarchy of concepts. While rolling up along the hierarchies
in order to consider aggregated concepts is a well understood



Fig. 7. General System Architecture.

Fig. 8. TALOS Screenshot Examples (with kind permission of Michael
Müller Verlag, Erlangen, Germany).

operation, many problems arise when considering the time
dimension. This is because time plays a particular role as being
a part of the situation definition (through the intervals). When
situations are derived from different sources of information,
the problem of finding the appropriate temporal granularity
and of combining the information arises. However, it is of
major importance for targeting individual users (e.g., in a
planning application) or groups of users (e.g., in an early
warning system), either as a simple notification (like in alert-
ing) or as a notification that the situations they planned differs
from the situations that the system knows and are likely to
occur. In this paper, we presented an advanced situation model
together with operators that handle various granularitiesand
which serves as a basis for the coarsening procedure that we
detailed, both in a simple way and in a more efficient form.

We finally presented our current architecture and illustrated
our approach using examples from the tourism area. This
approach was implemented in Java, tested in different projects
on JavaSE and JavaME environments, and ported to Objective-
C to support the iPhone platform. The situation model and
operations has been implemented on a mySQL 5 database,
using a star schema to model the multidimensional situation
space. The approach presented in this paper uses thecast
operator, which performs a precise mapping onto an exact
starting point of a situation. However, in applications such as
personal information management, this is not always realistic
(e.g., a meeting around 9 a.m. may mean plus or minus 5
minutes and certainly not 9 o’clock by the second!). Therefore
our future work includes investigating the use of theround
operator together with the specification of a concept that would
play an intermediary role between user-defined time (such as
the one of a calendar entry) and granules.

ACKNOWLEDGMENTS.

Part of this work was carried out in the framework of the
European project TALOS.

REFERENCES

[ADB+99] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith,
and P. Steggles. Towards a better understanding of context and
context-awareness. In H.W. Gellersen, editor,Handheld and
Ubiquitous Computing: First International Symposium, HUC’99,
volume 1707 ofLNCS, pages 304–307, Berlin/Heidelberg/New
York, 1999. Springer Verlag.

[All84] J. F. Allen. Towards a general theory of action and time.Artifical
Intelligence, 23(2):123–154, 1984.

[BD07] M. Baldauf and S. Dustdar. A survey on context-aware systems.
Intl. Journal of Ad Hoc and Ubiquitous Computing, 2(4), 2007.



[BDE+98] C. Bettini, C. E. Dyreson, W. S. Evans, R. T. Snodgrass,
and X. S. Wang. A glossary of time granularity concepts.
In O. Etzion, S. Jajodia, and S. Sripada, editors,Temporal
databases: research and practice, volume 1399 ofLNCS, pages
406–413, Berlin/Heidelberg/New York, 1998. Springer Verlag.

[CC02] L. Chittaro and C. Combi. Temporal granularity and indetermi-
nacy in reasoning about actions and change: an approach based
on the event calculus.Annals of Mathematics and Artificial
Intelligence, 36(1-2):81–119, nov 2002.

[CFP04] C. Combi, M. Franceschet, and A. Peron. Representing and
reasoning about temporal granularities.Journal of Logic and
Computation, 14(1):51–77, 2004.

[DELS00] C. E. Dyreson, W.S. Evans, H. Lin, and R. T. Snodgrass.
Efficiently supporting temporal granularities.IEEE Transactions
on Knowledge and Data Engineering, 12(4):568–587, Jul/Aug
2000.

[DSD06] C. Dorn, D. Schall, and S. Dustdar. Granular contextin
collaborative mobile environments. In Robert Meersman, Zahir
Tari, and Pilar Herrero, editors,OTM Workshops (2), volume
4278 ofLNCS, pages 1904–1913. Springer, 2006.

[Euz95] J. Euzenat. An algebraic approach to granularity inqualitative
time and space representation. InProceedings of the 14th
International Joint Conference on Artificial Intelligence(IJCAI),
pages 894–900. Morgan Kaufman, 1995.

[GLz+04] I. Goralwalla, Y. Leontiev, T. M.Özsu, D. Szafron, and Carlo
C. Combi. Temporal granularity: Completing the puzzle.Journal
of Intelligent Information Systems, 16(1):41–63, nov 2004.

[MGB+00] I. Merlo, G. Guerrini, E. Bertino, E. Ferrari, and S. Gadia.
Querying multiple temporal granularity data. InProc. of the
7th Intl. Workshop on Temporal Representation and Reasoning
(TIME’00), volume 00, page 103, Los Alamitos, CA, USA, 2000.
IEEE Computer Society.

[MPVW04] U. Meissen, S. Pfennigschmidt, A. Voisard, and T. Wahn-
fried. Context- and situation-awareness in information logis-
tics. In Current Trends in Database Technology – EDBT
2004 Workshops, volume 3268 of LNCS, pages 335–344,
Berlin/Heidelberg/New York, 2004. Springer Verlag.

[MPVW05] U. Meissen, S. Pfennigschmidt, A. Voisard, and T. Wahnfried.
Resolving knowledge discrepancies in situation-aware systems.
International Journal of Pervasive Computing and Communica-
tion JPCC, 1(4):327–336, December 2005.

[Sch05] H. R. Schmidtke. Granularity as a parameter of context. In
A. K. Dey, B. N. Kokinov, D. B. Leake, and R. M. Turner,
editors,Modeling and Using Context, Proc. of the 5th Intl. and
Interdisciplinary Conference (CONTEXT 2005), volume 3554
of LNCS, pages 450–463, Berlin/Heidelberg/New York, 2005.
Springer Verlag.

[TAL08] TALOS Consortium. TALOS project – task aware location based
services for mobile environments. http://www.talos.cti.gr/, 2008.

[WJL91] G. Wiederhold, S. Jajodia, and W. Litwin. Dealing with
granularity of time in temporal databases. InProc. of the
3rd Intl. Conf. on Advanced Information Systems Engineering
(CAISE91), pages 124–140, Berlin/Heidelberg/New York, 1991.
Springer Verlag.

Alg. 2 Coarsening a situation sequence.

COARSEN-SITUATION -SEQUENCE(
situation sequenceS, precisionp)

1 � if S is the empty sequence there is nothing to do
2 if S = ∅
3 then
4 return S

5 T ← an array containing all time points ofS
6 Sres ← ∅

7 tlast ← NIL

8 for i← 1 to length[T ]
9 do

10 � compute the granule (lower boundtlb
and upper boundtub) for time t

11 t← T [i]
12 tlb ← t/p
13 tlb ← tlb · p
14 tub ← tlb + p
15 if (tlast 6= NIL ) ∧ (tlast < tlb)
16 � the interval between the upper bound of the

last granule (tlast) and the lower bound of
the current (tlb) forms a single situation

17 then P ← pattern ofs at time tlast
18 if P 6= ∅
19 � create a new situations and add it

to the resulting sequence
20 then s← (tlast, tlb, P )
21 Sres = Sres ∪ {s}

22 if tlast < tub

23 then P ← pattern ofS at time tlb
24 P ′ ← ∅
25 F ← the set of all single features ofP
26 for j ← 1 to length[F ]
27 do f ← F [i]
28 d← the duration of featuref

in [tlb, tub)
29 if d > p/2
30 then
31 � add featuref to the

resulting patternP ′

32 P ′ ← P ′ ∪ {f}
33 if P 6= ∅
34 � create a new situations and add it

to the resulting sequence
35 then s← (tlb, tub, P

′)
36 Sres = Sres ∪ {s}
37 tlast ← tub

38 return COALESCE(Sres)


	TR-09-005 cover.pdf
	TR-09-005 no cover.pdf

