Mobile Task Computing:
Beyond Location-based Services and EBooks

John Liagouris!, Spiros Athanasiou!, Alexandros Efentakis?, Stefan
Pfennigschmidt?, Dieter Pfoser!-2, Eleni Tsigka3, Agnes Voisard?

nstitute for the Management of Information Systems

Research Center Athena

G. Bakou 17, 11524 Athens, Greece

{liagos|spathan|pfoser } @imis.athena-innovation.gr
2RA Computer Technology Institute
Davaki 10, 11526 Athens, Greece
{efedakis|pfoser}Qcti.gr
3Fraunhofer ISST
Steinplatz 2, 10623 Berlin, Germany
{stefan.pfennigschmidt|eleni.tsigka|agnes.voisard } @isst.fraunhofer.de

Abstract. Mobile devices are a promising platform for content delivery
considering the (i) variety of attached sensors, (ii) widespread availabil-
ity of wireless networks, (iii) even increasing screen estate and hardware
specs. What has been missing so far is the adequate coupling of content
to those devices and their users actions. This is especially apparent in
the area of Location-based Services (LBS), which, with few exceptions
(e.g., navigation), have not fulfilled their predicted commercial success in
mobile environments due to the following reasons: (i) content in typical
LBS applications is still narrow and static, (ii) available methods and
interfaces in mobile handsets for the discovery of available content are
at best cumbersome (e.g., keyword-type search), and (iii) existing struc-
tured content available in LBS applications is hard to reuse. In this work,
we propose the concept of task computing to complement and extend
LBS as a means to enable the intuitive and efficient re-purpose, discov-
ery, and delivery of rich content according to the users needs. Further,
we establish the theoretical foundations of task computing and its appli-
cation in the LBS domain. We also present a fully functional prototype
iPhone application structured around the concept of task computing.

Keywords: task computing, location-based services, ontologies, ebooks

1 Introduction

Despite the growth in the number of mobile users, the widespread adoption
of ubiquitous wireless networks, and the ever increasing capabilities of mobile
handsets, the market of mobile services is still dominated by simple infotainment
services. This is especially apparent in the area of Location-based Services (LBS),

which, with few exceptions (e.g., navigation), have not fulfilled their predicted
commercial success in mobile environments.

Location-based services have emerged a few years ago to allow end users
to obtain information based on some location, usually the position of the user.
Such services, for instance mechanisms to answer a query such as “Where is
the nearest subway station?” or “What are the exhibitions in the city today?”
are currently receiving a great deal of interest. They manipulate the common
aspects of location and time but also more complex notions such as the profile
of a user.

General LBS for mobile users are either extremely narrow and static in their
content offerings, or address the needs of business users (e.g., fleet management).
However, within the past few years, certain important arrivals of LBS systems
for everyday, casual users have emerged. These products and services focus either
(i) on expanding the reach of geospatial information, or on (ii) coupling social
network activities on a geospatial domain.

In particular, a class of services adequately represented by Google Maps/
Google Earth for mobile devices [4], focuses on the simple task of delivering stan-
dard geospatial products (such as maps), along with “free text”-based search for
web content. Other similar services come from Microsoft Bing Maps [1], Nokia
Ovi Maps [5], and so on. Though truly fascinating upon their arrival, these ser-
vices have not changed the way users discover and consume content. Discovery
still requires the users input from a hardware or on-screen keyboard. At best,
a catalogue of available content is presented to the user, according to his/her
search parameters and location. So the basic paradigm of how users manipulate
geospatial information has not been altered. Rather, it has been poorly ported
to mobile devices, simply by re-purposing available interface and information
retrieval concepts for smaller screens. In essence, Google Maps for mobile is a
literal port of standard Google Maps for mobile devices. The limited attentional
span of mobile users, required ease of interaction, necessary provision if accurate
content, is not dealt with. For example, a simple query for desktop-based users,
such as “Is there a nice Greek restaurant within 1km from location X that costs
less than 10 euro per person?” requires several searches, and the gradual filter-
ing/refinement of web content from several sources (e.g., maps, guides, blogs,
social networks). A mobile user does not have the time, nor adequate hardware
resources to perform this search. Further, since mobile phones are a de facto de-
mocratized medium, they appeal to less tech-savvy users as well. Even to users
that do not own a computer (e.g. developing nations), and who do not have any
reference points on how geospatial content discovery and delivery is performed.

The second class of products and services focuses on overlaying a geospa-
tial mantle upon social networks and interactions. Users can annotate content
with location attributes, whether it concerns their own interaction (e.g., geo-
tag profile messages), or points of interest (e.g. leave a restaurant review). Such
services include Facebook, Twitter, Yelp, Foursquare, Layar, and Google Buzz.
They have also been embraced by the users with great interest, but they still
remain a shallow means for general geospatial content discovery and delivery.

While users can see where their friends are, read and submit reviews on POls,
etc., the prevalent paradigm we discussed earlier is kept intact. Further, these
services highlight the problem even further, since they essentially comprise iso-
lated islands of geospatial knowledge. For example, unless one has a Facebook
account, he/she cannot search through the available content. The need for a
radically different approach on how geospatial content is organized, queried, and
presented to mobile users is more than necessary. One has to take account of
the special needs of mobile users, the specifications of mobile devices, and the
mass of readily available geospatial content and services in the web to provide a
persuasive solution. Rather than porting existing paradigms we must figure out
new ones that are both intuitive and efficient for the task in hand.

Stemming from these observations, we introduce the principles of task com-
puting as a viable alternative to the problem. Task computing at its simplest,
is based on the admission that human beings tackle everyday problems through
a simple and naive problemsolving procedure. In order to attain a goal, divide
it into smaller, less complex problems, find a solution for each, and therefore
accomplish the greater goal. Problems requiring a solution are called tasks, and
sub-problems are called sub-tasks. In this respect, we propose the alignment
of how geospatial content is structured and queried based on this basic human
thought process. Instead of requiring users to perform the translation of their
tasks to the digital domain, we convey the digital means closer to the user needs
and cognitive skills.

The purpose of this work was to lay the theoretical foundation of task com-
puting in mobile environments and develop a complete framework containing all
the necessary programming tools, libraries, APIs, and authoring tools to provide
modularity and simple integration with existing solutions. Before continuing, we
emphasize that our approach is orthogonal to more traditional tourism applica-
tions which recommend sites based on people profiles (with a recommendation
system that can be more or less elaborate, see for instance [13]). Additionally,
it extends previous works based on the notion of task computing in that it ad-
dresses the problem of supporting applications with rich content. In a nutshell,
the main focus of our work is the dynamic discovery, delivery, and presentation
of rich and personalized content to mobile users based on the tasks they want to
perform.

The remaining document is organized as follows. Section 2 describes the
concepts of task computing. Section 3 presents the principles of our approach
and the overall architecture of the implemented infrastructure. Section 4 presents
the proof of concept through the TALOS! prototype. We conclude in Section 5
with directions for future work.

2 Task Computing

One major reason for the difficulties in searching, finding, and selecting suitable
services is that User Interfaces (Uls) are currently designed from the view point of

! http://www.talos.cti.gr/

the domain. By using keywords, one has to follow the menu provided, “translate”
what he/she wants to do in terms of the menu and, finally, reach the appropriate
service [22].

A common sense implied in the previous paragraph is that users organize
their everyday lives around solving problems (tasks) and thus both services and
content should be structured around tasks in order for them to be easily dis-
covered and assimilated. This idea is strongly encouraged by the enlightening
evaluation of NTT DoCoMos task-based approach [20]. It is shown that the per-
centage of users reached the appropriate services by employing a keyword-type
search through their handsets was no greater than 16%, whereas in the exis-
tence of a task-oriented search interface the corresponding percentage grew up
to about 63%. According to the same test, it is also astonishing that 50% of the
latter (one out of two) reached the services within five minutes, compared to
just 10% (one out of ten) of the keyword-type search users.

Task computing [16, 14, 15] is a relatively novel concept in regards to the
design, implementation, and operation of computing environments, aiming to
fill in the gap between tasks (i.e., what users want to do) and services (i.e.,
functionalities available to the user). In contrast to the current, traditional com-
puting paradigm, task-oriented computing environments are ideal for non-expert
users, since they provide access to useful information in a goal-centric manner,
requiring minimal user adaptation to the particularities of the user interface and
device characteristics. Furthermore, task computing is ideal for pervasive and
ubiquitous environments, i.e., computing applications aiming to help users in ac-
complishing their daily goals. In such environments, users expose high demands
for minimal interaction and show limited tolerance to ineffectual content. The
organization of content and services around tasks, offered in this discipline, has
the potential to greatly improve the computing experience, since users receive
timely and accurate information for the exact task in hand.

As already mentioned, although the research in this area is still in its early
stages, there are systems and prototype applications which demonstrate persua-
sive evidence about the importance and benefits of task computing. Besides the
system developed by NTT DoCoMo labs, which includes (i) a knowledge base
of tasks that a mobile user performs in daily life, and (ii) a database of services
that can be used to accomplish these tasks, another important work in this field
is the Task Computing Environment (TCE) [23], a service discovery and com-
position framework for pervasive computing environments. TCE can reduce the
cost of performing a task by displaying the tasks that could be performed by
executing pervasive services located around the user.

2.1 Ontologies in a Task-oriented Environment

Precondition for providing automated task-based services is the formal descrip-
tion of the potential tasks. This procedure amounts to the construction of a task
model or, in other words, a so-called task ontology. Up to now, task ontologies
have been used in various fields ranging from Artificial Intelligence [28,29] and
Expert Systems [19] to Geographical Information Systems [26] and UI Modeling

Egopenngiblotisy

{Learn about Exhibitions *

| Find out Ticket Prices |

[Buy Tickets

- Find a Museum {Move by Metro

“Move by Bus |
) | —
[Move to the Museum - Move by Taxi

| Move by own Car |
1Move by Car — - —
- - ~ |Renta Car |

Sightseeing
™ ~— Find a Gallery |-

| Find an Attraction | -
{Find a Park |— -

"/ Find a City Tour |

- Find Event/Activity — -

Fig. 1. Task Hierarchy Example

[25]. In general, the reason for their popularity lies in that they provide a flexible
way for representing problem solving procedures, mainly because they facilitate
sharing and reuse of knowledge along with automated reasoning capabilities [30].

In the context of the Semantic Web [11], the definition of ontology could
be that it is “a formal specification of a conceptualization”. Each ontology of
the Semantic Web consists of two parts, (i) a vocabulary (intentional knowledge)
that consists of concepts (classes) and relationships (properties or roles), and (ii)
additional knowledge (instantiation) consisting of individuals, class and property
assertions. A class assertion denotes that a specific individual belongs to a class,
while a property assertion assigns a pair of individuals to a specific property.
Ontologies in this context are used to provide order for a set of concepts and
thus they are also referred to as domain ontologies.

Simirarly, task ontology is a term referring to a formal model of tasks. Accord-
ing to the domain of interest, a task may represent a software procedure (e.g.,
“Sort an array of integers”), a business process (e.g., “Review the proposals”)
or even a simple human activity (e.g., “Cook food”). In our scenario, each task
ontology includes the specification of the task attributes and parameters (e.g.,
name, input, necessary and/or sufficient conditions for accomplishing a task)
and the definition of the relations between different tasks, such as subsumption
and temporal ordering.

Intuitively, building a task ontology in our case amounts to modeling what
the user of a mobile handset may want to do, e.g. “Go to the Theater”, “Visit
a Museum” or “Eat at a Restaurant”. The basic feature of such an ontology is
that complex tasks like those mentioned before are broken into simpler subtasks,
as shown in Fig. 1. Here, the hierarchy defined in the task ontology serves as a
“task-oriented index” that is used for retrieving the appropriate content while
guiding users to perform a task.

As shown in Fig. 2, users tasks are described in the form of task ontologies
whereas domain and context ontologies contain some of the data needed for
instantiating these tasks, i.e., for capturing specific users activities.

Domain Ontologies Context Ontologies

Fig. 2. Ontologies in a task-based service provision system

When defining a task, we may need to refer to one or more domain ontologies
for concepts and definitions that are used to describe inputs, outputs, precondi-
tions of the task and so on. Consider for instance the task “Find a Museum”.
Here, a necessary list of museums in the area can be generated from the instances
of a respective Domain Ontology that is stored in a relational database. In ex-
ploiting the expressiveness of ontologies, we are able to perform the following:

— Classification of resources: Instead of just providing to the user a list
of museums in the city that may prohibitively grow huge, especially for a
screen of small size, the classification of museums according to their type
can be very useful and time-saving when searching for the appropriate one.

— Reuse of knowledge: Already described knowledge about solving a task
must be accessible for reuse in another task if suitable. Thus, by using
ontology-based techniques, we are able to extract parts of solutions related
to different tasks and combine them in creating solutions for new tasks. A
representative example of this case is the knowledge about transportation
as shown in Fig. 1. In this example, the highlighted group of tasks can be
reused in more than one levels of the task ontology enabling the authors to
easily define multiple “paths” for accessing the same resources depending on
the tasks a user selects to perform.

— Context-aware filtering: The resources for accomplishing a task alter dy-
namically according to the current context, e.g. the users location. Thus,
by also modeling context, we are able to use conjunctive query answering

techniques (including both context and structured content) for the efficient
extraction of the most appropriate resources. A similar approach is followed
in [21].

— Access to various data sources: By using the W3C standard languages
for describing ontologies, i.e. the Resource Description Framework [6] and
theWeb Ontology Language [8], we can import and process data from vari-
ous data sources existing in the web. This can be done either in a forward-
chaining manner, where data are processed and stored in the system database
offline, or even directly through the mobile device when the user uses the
application. A representative example of the second case is the dynamic
retrieval of content described in RDF format from DBpedia [2]. One of the
first attempts to store and efficiently manage voluminous RDF data in a mo-
bile device with limited capabilities is presented in [27] with very promising
results.

— Consistency check: When constructing a task ontology one has to pay
attention not only to the syntax, but also to the semantics of the latter.
The former, i.e. the syntax validation, is ensured by restricting authors to
construct the ontology through a graphical interface and automatically in-
terpret the graphical notations into XML. However, regardless the correct
syntax, there may be declarations in the ontology that contradict one an-
other (e.g. two tasks each one of them requiring the other to have been
performed previously). From our experience, allowing IT-illiterate authors
to arbitrarily define their own entities (tasks, relations etc.) will definitely
result in various logical contradictions or redundancies. Unfortunately, these
kinds of errors cannot be captured through a simple XML Schema validation
and thus additional algorithms are required to ensure the consistency of the
ontology. These algorithms are based on the firm semantics of the ontology
description languages (e.g., OWL).

When faced with a particular type of content one has to be aware that not
all content can be modeled using ontologies. For instance, the travel guide con-
tent that we use in our prototype is in the form of unstructured text. However,
besides the part of the content, such as the POI-related data (e.g., museums,
parks, etc.), which can be modeled using ontologies, unstructured text that is
stored and retrieved into/from a relational database can still be used in instan-
tiating the tasks of a task ontology. We address this issue in Section 4.3. At this
point we emphasize that, in an ontology-based approach, POIs along with their
properties (e.g., addresses, operating hours, specific features etc.) are regarded as
pieces of well-structured information that is extracted from the overall available
(unstructured) content and modeled using ontologies. This kind of POI-related
information can be either static (extracted from a book) or dynamic material
(retrieved from the Web). Context-related information (e.g., date, time, loca-
tion, weather, users profile) can be modeled using context ontologies [12] and,
similarly to the case of POlIs, it can be either static (e.g., the users profile) or
dynamic (e.g., the location of the user retrieved on-the-fly).

2.2 Task Modeling

A task reflects what an end-user wants to do in a high-level layer of abstrac-
tion, e.g., “Visit a Museum”. Each task is accompanied by a set of properties
(input, output, precondition etc.) and it is instantiated by context and content
in order to become an activity. Following the object-oriented paradigm, a task
can be regarded as a class of activities (instances) that share common types of
attributes. For example, if we assume that the task “Visit a Museum” has the
attributes “Museum” and “Date” defined as inputs, then it can produce activ-
ities like “Visit the Museum of Acropolis on 26/6/10” or “Visit the Louvre on
28/7/10” and so forth.

Web Senices
— - — Neon-functional Properties

= . « == Functional Properties

Fig. 3. Task Properties

Definition 1. A Task T is a collection of well-defined attributes (or properties)
P;. T=P;.

As shown in Fig. 3, each property P; of a task is classified under one of
the following categories: Non-functional Properties, Functional Properties, and
Services. The first includes the metadata of a task (name, description, version
etc.) that are useful for the task authors. The second class includes all parameters
taken into account when a task is performed by the user. This class is divided
into two subclasses, Pre-information and Post-information, that are described
in the following. Finally, each task in a task ontology may be realized by one
or more web services, e.g. the task “Book a Hotel Room” that is realized by a
web service provided at “www.booking.com”. In our prototype, the URLSs of the
respective web services are assigned by the author a priori.

Pre-information includes all parameters needed in order for a task to be
executed successfully. This class breaks down into two disjoint subclasses: Input

and Precondition. An input stands for a parameter needed for performing a task
and it can be defined as optional. For instance, the task “Find a Restaurant”
may take as alternative inputs the exact location of the user in the form of
longitude and latitude, as long as an abstract location in the form of the city
or neighbourhood name he/she is located in. In our model, task inputs can
be (i) context-related parameters, e.g. the user’s location, and (ii) POI-related
parameters, e.g. the id of the specified mall in the task “Find Shops in the Mall”
as retrieved from the user’s local database (cf. Section 3.2). Note that when
defining a task the author can specify groups of inputs that must be instantiated
all together in order for the task to be performed.

Definition 2. An input I of a task is a class defined along a hierarchy of con-
cepts that belongs either in a Domain or in a Context Ontology.

On the other hand, a precondition represents conditions on the task inputs
that must hold in order for a task to be performed successfully. Preconditions are
logical expressions applying to (i) context, and (ii) POI-related parameters that
exist in the user’s local database. Regarding the task “Visit an Open Market”,
a representative example of the first case is “Weather = Sunny”. In the second
case, the precondition “Hotel.Rank = 5” (with Hotel defined as an input of the
respective task) can be used in filtering the hotels retrieved from the user’s local
database when looking for a luxurious one. In our prototype, such preconditions
are specified either a priori by the authors or on-the-fly by the end-user in order
to act as an (optional) filter when searching for the most appropriate resources or
services. From the Ul perspective, they indicate the existence of a screen where
the user can specify his/her preferences on the available task inputs and/or POI
attributes.

Definition 3. A precondition Py of a task defines a restriction in the instanti-
ation of a task input.

Post-information includes all parameters that are generated after executing
the task. It breaks down into two disjoint subclasses: Output and Postcondition.
An output describes information returned after performing a task. Similarly to
the case of inputs, task outputs are classified under (i) context-related param-
eters, e.g. type of weather produced from the task “GetWeather Forecast” and
(ii) POIL-related parameters, e.g. the name and type of a POI that matches the
specified input parameters. The difference with respect to inputs is that a task
can produce as output a piece of content in the form of unstructured text that is
retrieved either from the travel guide (static) or from the web (dynamic). Note
that an output of a task (except the unstructured content) may be used as in-
put in other tasks of the ontology introducing a dataflow. In our prototype, the
default output of a task is the unstructured content retrieved from the travel
guide (if available).

Definition 4. An output O of a task is a piece of unstructured text or a class
defined along a hierarchy of concepts that belongs either in a Domain or in a
Context Ontology.

A postcondition represents conditions that must hold after performing a task.
Similarly to preconditions, postconditions are logical expressions applying to (i)
context and (ii) POI-related parameters both defined as outputs of a task. An
example of a postcondition regarding the task “Move to the Park” could be
something like “User.Location = Park.Location” where the “User.Location” is
a context-related parameter referring to the user’s position (defined as output of
the task) while “Park.Location” is the location of the POI, i.e. the specified park,
also defined as an output of the task. From the mobile application perspective,
such a postcondition is useful for recommending tasks to the user and also for
helping the user (re)organize the schedule of tasks to perform during the trip.

Definition 5. A postcondition PO of a task defines a restriction in the instan-
tiation of a task output.

Before continuing, we point out that each input and output of a task in
our prototype is instantiated by one of the following modules: (i) the Context
Aggregator that manages all context-related attributes, (ii) the user (through
the UI), and (iii) the users local database.

As far as task relations are concerned, in our task modeling approach we
define four kinds of relationships between tasks: (i) SubTaskOf, (ii) OR, (iii)
CHOICE, and (iv) Sequence relation. The SubTaskOf relation introduces a task
hierarchy and denotes that the parent task is accomplished by accomplishing all
of its children in any order. The OR and CHOICE relations introduce a task
hierarchy as well, but in the former case the parent task is accomplished by at
least one of its children, while in the latter case the parent task is accomplished
by exactly one of its children (exclusive option). Finally, a Sequence relation
denotes that a task is performed always before another one and it is accompanied
by at least one parameter passing (binding) from the first task to the second one.
For instance, the tasks “Find a Hotel” and “Learn about Hotel Facilities” are
representative examples of this case considering that the second task always
needs as input the output of the first one, i.e. the specified hotel. From the
application perspective, different types of relationships between tasks in the
ontology layer define different functional properties of the user interface (display
order, redirection etc.).

3 Background and Architecture

This section presents the modes of interaction with the system, the basic con-
cepts, as well as the overall architecture of TALOS. For the ease of presentation,
in the remaining document we address the use case of a (mobile) traveler but
the overall approach can be easily applied to other scenarios as well where task
computing plays a central role.

3.1 Modes of Interaction

Our task-based service provision system supports the following two modes of
interaction between the end-user and the services provided:

— Planning mode: The user selects a number of available tasks from those
existing (pre-defined by the authors) in the task knowledge base of the system
and incorporates them in a schedule. In order to produce a schedule, the
user has to provide (i) the order of the tasks he wants to perform during the
trip and (ii) the duration of each task (start and end time). This procedure
results in a number of planned activities, each of which stands for a single
step of the users schedule. Besides the previous basic requirements, the user
can also define context-related prerequisites (preconditions) for each step
(e.g., preferred weather condition). When the user finishes with the plan,
the tasks are instantiated and the prerequisites are automatically evaluated
by the system (for instance, if a weather prerequisite has been specified,
weather forecasts are used) in order to identify conflicts and help the user
re-organize the schedule.

— Trip mode: The user has already made the schedule of the trip, which is
downloaded on the mobile device, and now clicks on a planned activity while
being on site. In order to perform the specified activity (e.g., visit the open
market), the respective task is re-instantiated which means that the required
context-related inputs and prerequisites are reevaluated, either in a push or
in a pull mode, using the current context that is retrieved on-the-fly. If
for example, in this case, the current weather conflicts with the precondition
defined in the schedule (a priori by the user), then a new rescheduling process
takes place where the system suggests a number of alternative tasks after
informing the user about the conflict. The recommendation of alternative
tasks is done according to (i) the users schedule, and (ii) the current context
(location, time, weather, users profile etc.).

The creation of the schedule is done through a Content Portal that is de-
scribed in Section 3.3. Regarding the Trip mode, we point out that the user is
not restricted only in performing the tasks he/she (optionally) specified during
the Planning mode. Instead, taking into account that the mobile application
also provides a general hierarchy of tasks, the user can select additional tasks
to perform (following this hierarchy) without having them added in a schedule.
In any case, the instantiation of a task, the recommendation and rescheduling
processes, and the retrieval of the appropriate content and services while the
user is on site is based on the principles we describe in the following.

3.2 Basic Concepts

The overall mechanism relies on concepts coming from mobile applications but
also from Event-based System (EBS) architectures, which are designed to provide
a quick reaction when new information is coming to the system.

The context-related parameters required for instantiating a task (date, time,
location, weather, users profile) are managed using the notion of the situation. In
simple words, a user’s situation consists of a set of context-related parameters
which are valid during a certain time. As described in [17], a situation is a
multidimensional concept defined as a triple (C,t1,t2) with C a collection of

(attribute, value) pairs and ¢; and t5 the beginning and the end of the interval
on which the collection C' is valid. Each attribute of a pair stands for a class
defined in a context ontology.

Following the publish-subscribe paradigm as often used in event-based sys-
tems, users subscribe to information stored in different sources (e.g., in a database
of museums). These sources publish new information when there is a change (e.g.,
new opening hours). In a mobile, task-oriented application like ours, the need for
new information occurs when there is a new location or a new task to consider.
In general, an event is usually understood as “a happening of interest”. In our
case, an event is a a new task or a new (significant) location. This is detected
on a pull mode but also on a push mode.

As far as re-scheduling is concerned, such a need occurs when something
has changed either on the source side or on the user side (e.g., new location).
On the source side, changes can occur on static sources when there is an update
(e.g., new opening hours) or on dynamic sources, for instance, regarding weather
prognosis that may affect the planned schedule. Note that if there is a change
of plan, the system could notify the user of the exact changes as it is done in
[18] when there is a discrepancy between what the user expects and what the
system can now offer. However, these notification issues are not the focus of our
current approach.

Finally, regarding the recommendation of tasks and content, the steps to be
taken are depicted in the following:

1. situation < get-user-situation()

(situation includes location, date, time of day, season, weather, or profile)
task-list < recommend-tasks(situation)

task-selected < choose-task(task-list)

content-list < recommend-content(task-selected; situation)

show-content (content-list)

U LN

3.3 Architecture

The architecture of the overall system is illustrated in Fig. 4. The system has a
typical three-tier architecture composed of (i) the Data Sources tier where the
task ontologies and the available content are stored, (ii) the Services tier that
includes all services implementing the business logic, and (iii) various Clients.
In addition, two kinds of tools, the Task Ontology Authoring Tool (cf. Section
4.2) and the Content Authoring Tool (cf. Section 4.3), are provided to serve as
a means to import, edit, and update the data sources.

A Task Author (TA) is responsible for creating the task ontologies based on
the model we described in Section 2.2. By the time a task ontology is created
and uploaded on the server, it is regarded as an Idle Task Ontology (ITO). This
means that the ontology cannot be downloaded and used by the end-users until
content is assigned to its tasks. The latter is performed by the Content Author
(CA). By the time a CA assigns content to the tasks of an ITO, then the task

external content updatas
)

sources, e.g., U
weather service
Tools Data Sources Services Mabile Client
iy
pusl ;
/ Content e s Provider
> Filtering H
Module 5 context
‘changes
"_-’ Content
Content — R
e [F O] Aumerng | [P Teskomed] Traveer with
content Tools Ul mobile guide
updates Content ‘
Selector
:() Content Portal
N Task-based Index H— A <«
H O Traveler
t selact with PC
R and
v Task-based package
Content
Task o | || Selection
Author % O Autharing N_ | Task Descriptions # Task Selector OH o
Tool «F
p Traveler
O with e-Book

Fig. 4. System Architecture

ontology becomes an Operational Task Ontology (OTQO) which means that it can
now be downloaded (along with the assigned content) and used by the end-users.
Obviously, besides the assignment of (structured and unstructured) content to
tasks, the CA is also responsible for the overall management of content (import,
edit, update, geocode etc.).

The Data Sources tier encompasses (i) the Task Knowledge Base (TKB) and
(ii) the Content Base (CB). TKB keeps all versions of every task ontology. The
main reason we keep all versions of task ontologies in TKB is because, when
downloading an OTO, the user of the mobile device may decide to include only
a part of the assigned content and not all of it. In such a case, the rest of the
content can be downloaded gradually during the use of the application. Thus,
a downloaded OTO cannot be overwritten in the server until all end-users have
updated their local copies; otherwise, in case the downloaded OTO is out of
date, incompatibility problems may occur. Apart from this, a version history of
the authors work can be very useful when, for some reason, one needs to rollback
to an older version.

All available content is stored in the Content Base. More specifically, CB
includes (i) unstructured content in the form of text, (ii) geo-referenced (struc-
tured) content in the form of POIs and their attributes, and (iii) the ids of
the (operational) tasks to which the content is assigned (Task-based Index). As
mentioned in the previous sections, POl-related data are described using an
ontological model, hence, they are stored in CB following a variation of the
widely-adopted database representations presented in [24]. As shown in Fig. 4,
the dynamic content retrieved from external sources (e.g., web pages) is accessed
by clients directly.

The Services tier encompasses components for recommending (i) tasks with
respect to a users situation (Task Selector), and (ii) content from the underlying

Content Base using a task selected by the user along with the users situation as
parameters (Content Selector). Task and content selectors are used in planning
mode (e.g., recommend content targeted to a backpack traveller or content re-
lated to events that take place during the trip), but also in trip mode when an
automatic re-scheduling is needed. However, the recommendation of tasks can
also be done offine by using the context-related task parameters defined in the
operational task ontology. For example, in case the task author has specified a
weather precondition for the task “Have a Boat Tour”, then this precondition
will be evaluated using the current situation of the user and in case there is a
weather conflict, the task will be excluded from the recommended ones. At this
point we emphasize that, although the task and content selectors support the
use of content in a pull mode, a Content Filtering Module is used for notifying
the user about just-in- time content updates in the server (push mode).

Regarding the Clients tier, there are two different clients that use the services
of TALOS to provide task-based content delivery to the user. First, a Content
Portal facilitates the pre-selection of content based on tasks planned by the user.
In this case, the content can be compiled into a personalized travel guide eBook
augmented with (i) additional information from the web, and (ii) a task-based
index. Second, the content can also be compiled into a database (e.g., an SQLite
file) that is downloaded and used as an offine source of content in the mobile de-
vice. In the latter case, the users local database contains a (personalized) portion
of the content stored in the Content Base of the TALOS server that is coupled
with the tasks of the downloaded task ontology. To access this information in a
task-based and situation-dependent manner while traveling, besides the actual
content and the task-based index, a situation provider component (the Context
Aggregator) is included in the application. The situation provider uses various
techniques to collect and aggregate context data or even anticipate user situa-
tions. Context changes are forwarded to the client logic that calls the services
and adapts the task and content recommendations accordingly.

4 The TALOS Prototype

This section describes the TALOS prototype system which includes a number
of authoring tools and services as well as a mobile travel guide for the Apple
iPhone. The core objective in developing the prototype was not only to facilitate
the end-user interaction through an intuitive and easy-to-use interface, but also
to make task and content authoring as easy as possible.

4.1 General Information

The mobile travel guide provides a task-based interface where a mobile user can
select tasks from a predefined task hierarchy and access relevant content. The
Context Aggregator component gathers all data describing the users situation,
i.e., the users current location, time, weather, and the users traveler profile.
Depending on the users interaction with the Ul, and the current context, content

and tasks are recommended to the user, allowing for personalized information
provision. Apart from accessing information, the user can also use the planning
functionality supported by the mobile guide in order to create a trip schedule.

Available content involves static content that consists of an existing travel
guide for Brussels and a piece of geo-referenced content created by Michael Mller
Verlag?, as well as dynamic information from the Web. Dynamic information in-
cludes (i) map tiles provided by the OpenStreetMap project, (ii) scraped infor-
mation from various web sites concerning POIs, and (iii) information obtained
by different web services, e.g., the Yahoo [9] and Geonames [3] weather services.
Data storage on the mobile travel guide is handled by an SQLite database [7].
A combination of the Apple Core Location Framework and Wireless Position-
ing Techniques [10] are utilized in order to capture the users location (indoors
and outdoors) and to offer context-aware content. The prototype is developed
as a stand-alone application for the iPhone platform, hence, objective-C and the
iPhone SDK provided by Apple are used.

4.2 Task Authoring

The creation of task ontologies is done within the Task Ontology Authoring Tool
(TOAT). TOAT provides an interactive 2D canvas where the authors can define
the tasks of the ontology along with the relations among them by simply dragging
elements from a palette. The result of this procedure is a Directed Acyclic Graph
(DAG) where each node represents a task, and each edge represents a relation
between two tasks. For ease of presentation, the underlying task parameters are
not visualized in 2D, otherwise the graph would be quite difficult to handle. Task
properties are defined form within a dynamic form shown in the right part of
Fig. 5.

After finishing the authoring procedure, the author can get the XML file
of the task ontology by clicking on the respective option in the menu. Before
producing the XML representation of the ontology, TOAT performs a number
of validations to ensure (i) that the file is valid according to a predefined XML
Schema and (ii) that the ontology does not contain contradictions or redundan-
cies. An example of the first case is when the author has defined that a task
is optionally accomplished by only one task, i.e. there is a single OR relation
between the parent and its children. In the latter case, a contradiction could be
a subTaskOf cycle where two tasks are defined to be both the child and parent of
one another. Finally, redundancies in the ontology are introduced when the user
defines the same thing more than once, as for example two identical sequence
relations between the same tasks.

The XML file generated by the editor is stored in the central task knowledge
base. This XML file defines the structure and the basic functionality (inputs,
preconditions, dataflow etc.) of the task-based UL In this sense, it serves as
an abstract model of the hierarchical user interface. The approach we follow
here is reminiscent of the well-known Model-View-Controller (MVC) architecture

2 http://www.michael-mueller-verlag.de/

paette K project oo Task Properties

Hew kS &
- Attt
pen

savn CAmERRaa: a TeskURL TravelFrdaHotd

Gererate + 4< w;m;\n Task wame: | Finet e Hotel

Largiege: | Evgien Bl

Sl 10
| h\\ i Created On: 20107522

wice: v booking s -]

Fig. 5. Task Ontology Authoring Tool

paradigm where the view (what the user interacts with) is based on a generic
model which changes (through the controller) according to (i) the users actions,
(ii) the current context, and (iii) the available content. Note that having a generic
model as the basis from which the view is automatically generated provides us
with great flexibility in managing the Uls, because the users application can be
easily updated by just changing the respective graph representations in TOAT.

In order to avoid software installation, TOAT is developed as a web browser
application using open JavaScript frameworks. The created task ontologies are
stored using AJAX-based techniques in the central task knowledge base of TA-
LOS. Based on the fact that we deal with a real-world environment where many
authors may work on the same task ontology, we have also implemented a sim-
ple versioning mechanism that ensures the consistency of the model in case an
update or a rollback to an older version is made.

4.3 Content Authoring

A core objective in the current effort was to make existing rich location-relevant
content, in our case travel guides, readily accessible through mobile device and
task-based interfaces. To do so we (i) linked such content to task metadata
(task annotation), (ii) geocoded the content to provide a map-based access,
and (iii) added dynamic Web content to the mix by using Web scraping, i.e.,
linking content from third-party sources to our content (e.g., linking the current
exhibitions of a museum from the respective Web page to the POI information
stored in our content management system). The above task require a content
management system, which in our case comprises a database (SQL Server 2008)
and an interface. Since content authoring is to be conducted by writers, the
annotation tool had to be easy to use. To also avoid software installation task, the

tool was implemented as a Web browser application, specifically using the Ruby
on Rails open source web application framework and JavaScript to implement the
client functionality. The following sections will give more details on the content
authoring tasks mentioned above.

Geocoding To geocode the content, we relied on existing Web services such
as the Google Maps and Yahoo Maps API, Geonames, and Open- StreetMap
namefinder and developed an application wrapper that provides uniform access
to any or all services depending on the users needs and licensing restrictions.
Advocating a semi-automatic geocoding approach, a map-based interface is in-
troduced that allows the user to update the automatic geocoding results by
dragging markers on the map. Fig. 6 shows the map interface.

Map | Satelite | ryord | Terrain

Alma

Agatha-Berchem

Teane ot SKotivkes. Address: Rue des Epéronnniers 42-44.

m Koskeiberg Lat, Lon: 50.846480503774586,4.366003305053702
e
€ LR | s -y
»
& iigea [2 o] e
B : i
{ 1 S Molrbeck
Craimen e 2 e
ruNelles | fueg,, B Wetsiost
o bie
ey > 5 o
e] Tronsl

Sl

5
Ak W

[Hotelname = Hotel address Show Geocode | Undo Save

Place Rouppe 10, Tram Show Eixhotel | Undo sae A
Anneessens postion | Changes | Changes

Changes
Aistote Avenve Stalingrad 7 Sinx i ke iy o

9 e posiion | Changes | Changes
Rue de laFourche 17-19, ¢ Gare | Show | Fishotsl | Un

Rue du Marché aux Herbes Save
7

8-80, Gare Centrale position

Save

Arlequin Hotel

Centrale, Tram Bourse fotel position | Changes | Changes
AuxArcadss | U des Bouchers 3638, Tam Show Eixhotel | Undo Sae
Bours hotel ostion | Changes | Changes
Show Fixhotel | Undo Sae
Bany Pt Pt 25 fotel position | Changes | Changes
Camefour de Rue du Marché Aux Herbes 110, ¢ Show Eixhotel | Undo sae
[Europe Gare Centrale hotel position | Changes | Changes
Avence de Stalingrad 25-31, Tram Show Fixhotel | Undo Save

PO Anneessens hotel position | Changes | Changes

4 & Bl 5

Fig. 6. Geocoding Interface

Task Metadata Using a task ontology as input, the content annotation tool
provides a simple means of linking tasks to content. The content as stored in the
content management system is shown in the Web interface along with the task
ontology represented in a tree structure. Clicking on a section highlights the sec-
tion and shows a new pop up window with the suggested task hierarchy as a tree
view and a list of already linked tasks with the specific section. After selecting
a portion of the content, tasks are linked by selection to the selected content.
Multiple selection is supported and the linked tasks are visualized accordingly.
Fig. 7 shows the interface.

Dynamic Web Content When considering electronic versions of print con-
tent, an important property is the possibility of frequent (and cheap) updates.

e s s s
ot Sich, e ais el nach Brissel 2 Kaimen und 1Anger 20 bicen ols AuE Bt W
Wahe Stadt Kennan Und 2uS SympAte Und erter Veriabthelt wrd Ladenschar,

Brissel for ...

++» Architekturliebhaber

Delete selected|
Selected Tasks

2

Buls erfoigte. 19,0, die desA o

fan s i Frantosachan Wotas d Mt oant: Her s 1 [] o

\useum, das Musionst y 3
Fioos s ¥anstes ol Cauhie i UL Varl. 2u emplanen S0d e a44 $ach MondEe WacHYAIRGen AuSsTalren dvs
Architaktumussuns La Loga in Txelles (5. 215)

Fig. 7. Task Annotation Interface

To streamline publishing such content, we link third-party Web content to our
content base. Examples, here are opening hours and changing exhibitions of mu-
seums. Once such a link is established, it is simple to check if the information at
the remote site has changed. We have developed Web scraping tools, specifically
a Firefox Web browser extension that allows one to mark content at a remote
site and so to link dynamic Web content to authored content. Fig. 8 showcases
the tool with its Firefox extension.

4.4 iPhone Interface

The user interface of the mobile travel guide includes four different modes,
namely the (a) Activities, (b) eBook, (¢) Map, and (d) Diary mode as shown
in Fig. 9. We point out that all these modes are interlinked to one another. Each
one of them provides a different way to access available information and thus it
presents another dimension of it.

The activities mode shows either the predefined task hierarchy or a context-
adapted one. It offers a task-based Ul which is generated dynamically, as defined
in the task ontology. A task selection leads the user to appropriate content which
can be a piece of unstructured text or a list of POIs. The map mode offers
a spatial view consisting of a full screen map showing the (geocoded) POIs.
Selecting a POI reveals content and task recommendations.

The eBook mode is the content view, where unstructured content, such as
text derived from existing travel guides, and structured content, such as POI
metadata can be read. For each unit of content (which could be a section of the
guide or a POI) relevant tasks and POlIs are suggested. Finally, the diary view
offers a temporal view, where the user’s plans and memories are presented. The
user selects tasks in order to plan his/her activities and stores bookmarks of all

Hotel Amigo
Table of Contents | Guides

fThe Rocco Forte Collection is
deliighted to introduce the newly
refurbished Hotel Amigo, which we
have restored to its rightful status
as the best huxury hotel in
Brussels. Superbly located in the
very heart of Brussels, adjacent to

Hotels in Gran

IRy Address Web Developer » I fone of the most beautiful squares,
AlaGande | PlaceRox in Europe, Grand Place, closs to
Cloche Ammeesse Brussels’ financial district | and

within essy walking distance of
L Riaices 8 the antiues district of Le Sablon,
Ais Rue du M otel Amige now provides 3 styih
7860, » Gare Corale and central base from which to
explore the ci
Avistote Avene Stalingrad 7 i Y.
Each one of the bedrooms and

* Adequntatsl Rus dela Fourche 17-15, ¢ Gare siites at Hotel Amigo are indidual

Central, Tram Bourse n style, spacious and kixurious,

L e b o with some offenng views towards
TEuro Gare Centrale - [Grand Piace and others extensive
views over the rooftops of

Floris Rue des Hareng 66, ¢ Gare —— Stow ks, a0t e e
Centrae, Tram Bourse ocioped | with - the latest

Flois Avenue Avenue de Staingrad 26-31, Tram swiny hoteforsamene com technology and facilties for both

Anneessens bbusiness and leisure guests.

Show
= Ferdinando Santi, serves creative

Hotel Windsor Place Rouppe 13, Tram w com Italian and Mediterranean cuisine
Anneessens I within a relaxing, comfortable and
. e contemporary atmosphere whie
Ibis Rue du March aux Horbs 100 hotel com Fegreinto Mg i i
selection of cocktails, is ideal for
La Légende Rue du Lombard 35, Tram Bourse want hotellalegende com Show lan aperitif
Lo Dix-Septiéme | Rue doa Madeleine 25, ¢ Gare winy ledixseptiome be Show
Centrale, Tram Bourse o |
Madeleine Rue de la Montagne 20-22, + s hotella-madeleine be Show Select Al
Gare Contrale =
Pl 1 _‘[J __ =l
¥ a3 & |zotero .

Rack

Fig. 8. Web Scraping Interface (plugin and web interface)

kinds of available content or personal pictures and notes to create trip memories,
creating in this way a personal trip diary.

5 Conclusion

In this work, we investigated the potentials of dynamic discovery, delivery and
presentation of rich content to mobile users based on the tasks they want to
perform, an approach that leads to Mobile Task Computing. Starting from the
theoretical foundation of the task computing paradigm in mobile environments,
the contributions of this work also include a complete framework containing all
the necessary programming tools, libraries, APIs, and authoring tools to provide
modularity and simple integration with the existing solutions.

The core feature of our approach is an intuitive task model that can be used
to describe the various activities of the end-users. All context-related parameters
required for the dynamic discovery and personalization of the available content
are integrated with this task model by exploiting the flexibility of ontological
engineering. The first results from the evaluation of the prototype iPhone appli-
cation (developed in the context of the TALOS project) clearly demonstrate the
advantages of our approach.

Our future research directions in the field focus on collaborative task com-
puting environments where users can share or recommend tasks to others and
also on the combination of task and cloud computing techniques for retrieving
resources and services available on the cloud by utilizing task-related knowledge.

Acknowledgments. This work was partially supported by the TALOS project,
funded by the FP7 Research for SMEs work programme of the European Com-

Filter Activities Filter Plans & Memories

Reading < Juni 2010 >

W Uberachten > T
Activities 7|89 [10|11|12]1n
14 15 16 17 18 19 20
21| 2| 23 24 25 |2 2

»

| & Find Hotel: A la Grande Cloche >

Find Hotel >

Find Appariment

nnnnn & Make a Booking: A la Grande Cloche >

& Travel ToFromin the ity: De SKie.. >

Fig. 9. iPhone screenshots. (a) Activities Mode: the task-based Ul allowing for content
provision and planning (b) EBook Mode: the content view offering structured and
unstructured content (¢) Map Mode: the spatial view showing POIs on a full-screen
map (d) Diary Mode: the spatial view showing users plans and memories

mission under contract number 222292. We would like to thank all partners in
the TALOS project for their significant contributions in realizing this work.

References

Bing mobile. http://wuww.discoverbing.com/mobile/. Last accessed July 2010.

Dbpedia. http://dbpedia.org/About. Last accessed July 2010.

Geonames. http://www.geonames.org/. Last accessed July 2010.

Google mobile. http://wuw.google.com/mobile/. Last accessed July 2010.

Ovi maps. http://betalabs.nokia.com/apps/ovi-maps-beta-for-mobile. Last

accessed July 2010.

6. Resource description framework. http://wuw.w3.org/TR/REC-rdf-syntax/. Last
accessed July 2010.

7. Sqlite. http://www.sqlite.org/. Last accessed July 2010.

8. Web ontology language. http://www.w3.org/TR/owl2-overview/. Last accessed
July 2010.

9. Yahoo weather. http://weather.yahoo.com/. Last accessed July 2010.

10. S. Athanasiou, P. Georgantas, G. Gerakakis, and D. Pfoser. Utilizing wireless po-
sitioning as a tracking data source. In Proc. of the 11th International Symposium
on Advances in Spatial and Temporal Databases (SSTD), 2009.

11. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,
284(5):3443, 2001.

12. A. Bikakis, T. Patkos, G. Antonis, and D. Plexousakis. A survey of semantics-
based approaches for context reasoning in ambient intelligence. In Proc. of the
Artificial Intelligence Methods for Ambient Intelligence Workshop at the European
Conference on Ambient Intelligence, 2007.

13. A. Hinze and A. Voisard. Location- and time-based information delivery in

tourism. In Advances in Spatio-temporal Databases, volume 2750 of LNCS,

Berlin/Heidelberg/New York, 2003. Springer Verlag.

G o

14. R. Masuoka, Y. Labrou, and Z. Song. Semantic web and ubiquitous computing -
task computing as an example. In AIS SIGSEMIS Bulletin, pages 2124, 2004.

15. R. Masuoka, B. Parsia, and Y. Labrou. Task computing - the semantic web meets
pervasive computing. In Proc. International Semantic Web Conference (ISWC),
2003.

16. R. Masuoka and M. Yuhara, editors. Task Computing - Filling the Gap between
Tasks and Services. FUJITSU, 2004.

17. U. Meissen, S. Pfennigschmidt, A. Voisard, and T. Wahnfried. Context- and
situation-awareness in information logistics. In W. Lindner, M. Mesiti, C. Torker, Y.
Tzikzikas, and A. Vakali, editors, EDBT Workshops, volume 3268 of LNCS, pages
335344, Berlin/Heidelberg/New York, 2004. Springer Verlag.

18. U. Meissen, S. Pfennigschmidt, A. Voisard, and T. Wahnfried. Resolving knowl-
edge discrepancies in situation-aware systems. International Journal of Pervasive
Computing and Communication (JPCC), 1(4):327336, Dec. 2005.

19. R. Mizoguchi, J. Vanwelkenhuysen, and M. Tkeda. Task ontology for reuse of prob-
lem solving knowledge. In Proc. International. Conference on Building and Sharing
Very Large-Scale Knowledge Bases, pages 4659, 1995.

20. T. Naganuma and S. Kurakake. Task knowledge based retrieval for service relevant
to mobile users activity. In Proc. of the International Semantic Web Conference
(ISWC), 2005.

21. T. Naganuma, M. Luther, M. Wagner, A. Tomioka, K. Fujii, Y. Fukazawa, and S.
Kurakake. Task-oriented mobile service recommendation enhanced by a situational
reasoning engine. In Proc. of the Asian Semantic Web Conference (ASWC), 2006.

22. M. Sasajima, Y. Kitamura, T. Naganuma, K. Fujii, S. Kurakake, and R. Mizoguchi.
Task ontology-based modeling framework for navigation of mobile internet services.
In Proc. of the Third IASTED European Conference on Internet and Multimedia
Systems and Applications, 2007.

23. Z. Song, Y. Labrou, and R. Masuoka. Dynamic service discovery and management
in task computing. In Proc. of the First Annual International Conference on Mobile
and Ubiquitous Systems: Networking and Services, 2004.

24. Y. Theoharis, V. Christophides, and G. Karvounarakis. Benchmarking database
representation of rdf/s stores. In Proc. of the International Semantic Web Confer-
ence (ISWC), 2005.

25. M. Van Welie. Task-Based User Interface Design. PhD thesis, Vrije Universiteit,
Amsterdam, 2001.

26. S. von Hunolstein and A. Zipf. Towards task oriented map-based mobile guides. In
Proc. of the International Workshop HCI in Mobile Guides, (Mobile HCI), LNCS.
Springer Verlag, 2003.

27. C. Weiss, A. Bernstein, and S. Boccuzzo. i-moco: Mobile conference guide - storing
and querying huge amounts of semantic web data on the iphone/ipod touch. In
Billion Triples Challenge of the International Semantic Web Conference (ISWC),
2008.

28. B. Chandrasekaran, J. R. Josephson, The Ontology of Tasks and Methods. In Proc.
of the AAAI Conference on Artificial Intelligence, 1997.

29. D. Rajpathak, E. Motta, and R. Roy. A Generic Task Ontology for Scheduling
Applications. In Proc. of the International Conference on Artificial Intelligence (IC-
AT), 2001.

30. A. Gémez-Pérez, and V. R. Benjamins, Applications of Ontologies and Problem-
Solving Methods. In AI Magazine, Vol. 20 No 1, 1999.

